Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mặt phẳng (α) song song với mặt phẳng ( β) : 2x – y + 3z + 4 = 0 nên phương trình của mp(α) có dạng 2x – y + 3z + D = 0
Vì M(2; -1; 2) ∈ mp(α) nên 4 + 1 + 6 + D = 0 <=> D = -11
Vậy phương trình của mp(α) là: 2x – y + 3z - 11= 0
Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là:
Đáp án B.
Phương pháp: Mặt phẳng α đi qua M
Cách giải: Mặt phẳng α đi qua M và
nên có phương trình:
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
N' đối xứng với N qua đường thẳng d nên K là trung điểm của NN'
Vậy N' có tọa độ
\(\overrightarrow{NM}=\left(4;-2;2\right)=2\left(2;-1;1\right)\)
Gọi Q là trung điểm MN \(\Rightarrow Q\left(-1;3;2\right)\)
Phương trình mặt phẳng trung trực của MN (đi qua Q và nhận \(\overrightarrow{NM}\) là 1 vecto pháp tuyến) có dạng:
\(2\left(x+1\right)-1\left(y-3\right)+1\left(z-2\right)=0\)
\(\Leftrightarrow2x-y+z+3=0\)
b.
(P) có 1 vecto pháp tuyến là \(\left(1;2;-1\right)\)
Do \(\left(\beta\right)\) song song (P) nên cũng nhận \(\left(1;2;-1\right)\) là 1 vtpt
À thôi bạn ghi sai đề rồi, \(\left(\beta\right)\) chỉ có thể đi qua M hoặc N (1 điểm thôi), không thể đi qua MN được vì MN không song song với (P)
Anh ơi