K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H

a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)

AH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)

a) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 cạnh tương ứng )

=> AH là tia phân giác \(\widehat{BAC}\left(đpcm\right)\)

27 tháng 3 2020

a:Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có

AH chung

AC =AB (giả thiết)

Suy ra tam giác ABH = tam giác ACH ( cạnh huyền cạnh góc vuông)

b:từ trên suy ra : góc CAH = góc BAH

Suy ra AH là tia phân giác của góc BAC

13 tháng 3 2022

a) Xét \(\Delta ABH\) vuông tại H và \(\Delta ACH\text{vuông tại H}:\)

AB = AC \((\Delta ABC\text{cân tại A}).\)

\(\widehat{B}=\widehat{C}\) \((\Delta ABC\text{cân tại A}).\)

\(\Rightarrow\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn).

b) Xét \(\Delta ABC\) cân tại A:

AH là đường cao \(\left(AH\perp BC\right).\)

\(\Rightarrow\) AH là phân giác \(\widehat{BAC}.\)

c) Ta có: BH = CH = \(\dfrac{1}{2}BC=\dfrac{1}{2}8=4\left(cm\right).\)

Xét \(\Delta ABH:\)

\(AB^2=AH^2+BH^2\left(Pytago\right).\\ \Rightarrow AB^2=3^2+4^2.\\ \Rightarrow AB=5\left(cm\right).\)

Mà AB = AC (\(\Delta ABC\) cân tại A).

\(\Rightarrow AC=5\left(cm\right).\)

`\color{blue}\text {#DuyNam}`

`a,` Vì Tam giác `ABC` cân `-> AB=AC,`\(\widehat{B}=\widehat{C}\) 

Xét Tam giác `ABH` và Tam giác `ACH` có:

\(\widehat{B}=\widehat{C}\)

`AB = AC`

`=>` Tam giác `ABH =` Tam giác `ACH (ch-gn)`

`-> HB=HC (2` cạnh tương ứng `)`

`-> H` là trung điểm của `BC`

`b,` Vì Tam giác `ABH =` Tam giác `ACH (a)`

`->`\(\widehat{BAH}=\widehat{CAH}\) `(2` góc tương ứng `)`

`-> AH` là tia phân giác của \(\widehat{BAC}\) 

loading...

12 tháng 1 2018

A B m 2 1

Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó

Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)

Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)

Lại có tam  giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)

Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)

Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau

Do  đó Am//BC . (dpcm)

26 tháng 2 2020

bọn óc chó

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek