K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Xét ΔMNP vuông tại M có

\(MN=NP\cdot\dfrac{1}{2}=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)

\(\Leftrightarrow MP=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

10 tháng 10 2021

Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay \(AH=6\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{\sqrt{3}}{2}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{1}{2}\)

\(\tan\widehat{B}=\cot\widehat{C}=\sqrt{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{\sqrt{3}}{3}\)

30 tháng 9 2021

tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=92+122=225
  BC=15cm
* AH.BC=AB.AC
  AH.15=9.12
AH.15=108
  AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)

30 tháng 9 2021

b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)

10 tháng 10 2021

Xét tam giác ABC vuông tại B

\(AC^2=AB^2+BC^2\left(pytago\right)\)

\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Áp dụng tslg:

\(\left\{{}\begin{matrix}sinA=\dfrac{BC}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\\cosA=\dfrac{AB}{AC}=\dfrac{9}{15}=\dfrac{3}{5}\\tanA=\dfrac{BC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\\cotA=\dfrac{AB}{BC}=\dfrac{9}{12}=\dfrac{3}{4}\end{matrix}\right.\)

10 tháng 10 2021

Theo định lí Pytago tam giác ABC vuông tại B

\(BC=\sqrt{AC^2-AB^2}=12\)cm 

sinA = \(\dfrac{BC}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\)

cosA = \(\dfrac{AB}{AC}=\dfrac{9}{15}=\dfrac{3}{5}\)

tanA = \(\dfrac{BC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)

cotA = \(\dfrac{3}{4}\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)

hay MP=2cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔNMK vuông tại K có 

\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)

\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)

\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)

\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)

2 tháng 8 2021

pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)

\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)

\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)

\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)

NV
2 tháng 8 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)

\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)

\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)

\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)