Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\sqrt{x-3}=12\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=16\Leftrightarrow x=19\left(tm\right)\)
b) \(\sqrt{16\left(1-2x\right)}-8=0\left(đk:x\le\dfrac{1}{2}\right)\)
\(\Leftrightarrow4\sqrt{1-2x}=8\Leftrightarrow\sqrt{1-2x}=2\)
\(\Leftrightarrow1-2x=4\Leftrightarrow x=-\dfrac{3}{2}\left(tm\right)\)
c) \(\sqrt{4\left(9-6x+x^2\right)}-12=0\)
\(\Leftrightarrow2\sqrt{\left(x-3\right)^2}=12\)
\(\Leftrightarrow\left|x-3\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
a: ta có: \(3\sqrt{x-3}=12\)
\(\Leftrightarrow x-3=16\)
hay x=19
b: Ta có: \(\sqrt{16\left(1-2x\right)}-8=0\)
\(\Leftrightarrow1-2x=4\)
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)
a) \(3\sqrt{x-3}=12\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=16\Leftrightarrow x=19\left(tm\right)\)
b) \(\sqrt{16\left(1-2x\right)}-8=0\left(đk:x\le\dfrac{1}{2}\right)\)
\(\Leftrightarrow4\sqrt{1-2x}=8\)
\(\Leftrightarrow\sqrt{1-2x}=2\Leftrightarrow1-2x=4\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\left(tm\right)\)
c) \(\sqrt{4\left(9-6x+x^2\right)}-12=0\)
\(\Leftrightarrow2\sqrt{\left(x-3\right)^2}=12\)
\(\Leftrightarrow\left|x-3\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
1) Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1
Phương trình hoành độ giao điểm:
\(x^2-mx+m-3=0\) (1)
Để d cắt (P) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb
\(\Rightarrow\Delta=m^2-m+3>0\) (luôn đúng)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2=17\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)
\(\Leftrightarrow m^2-2\left(m-3\right)=17\)
\(\Leftrightarrow m^2-2m-11=0\Rightarrow m=1\pm2\sqrt{3}\)
1. Bạn tự giải
2. Phương trình có 2 nghiệm khác 0 khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow8m=3\left(m^2-1\right)\)
\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)
\(\sqrt{x+2}+2\sqrt{4x+8}=15\)
\(\Leftrightarrow5\sqrt{x+2}=15\)
\(\Leftrightarrow x+2=9\)
hay x=7
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)
Ta có : \(\left(x-2\right)^2\ge0\) => \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-2\right)^2}=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) x = 2
Vậy giá trị nhỏ nhất của A là : \(\sqrt{21}\) khi x = 2
\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)
Vì \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\) \(x-3=0\)
\(\Leftrightarrow\) \(x=3\)
Vậy giá trị nhỏ nhất của B là : \(\sqrt{21}\) khi x = 3
\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)
Vì