K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

 

a: Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACD}=\widehat{ACB}\)

hay CA là tia phân giác của góc BCD

b: Xét ΔDBA có 

M là trung điểm của AD

F là trung điểm của BD

Do đó: MF là đường trung bình

=>MF//AB

hay MF//CD(1)

Xét ΔADC có

M là trung điểm của AD

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//DC(2)

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//CD//AB(3)

Từ (1), (2) và (3) suy ra M,F,E,N thẳng hàng

a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)

nên ΔABE cân tại B

hay BA=BE

b: Ta có: ΔBAE cân tại B

mà BF là đường phân giác ứng với cạnh AC

nên BF là đường cao ứng với cạnh AC