Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
a) Ta có: \(4\left(2-x\right)^2+xy-2y\)
\(=4\left(x-2\right)^2+y\left(x-2\right)\)
\(=\left(x-2\right)\left[4\left(x-2\right)+y\right]\)
\(=\left(x-2\right)\left(4x-8+y\right)\)
b) Ta có: \(3a^2x-3a^2y+abx-aby\)
\(=3a^2\left(x-y\right)+ab\left(x-y\right)\)
\(=\left(x-y\right)\left(3a^2+ab\right)\)
\(=a\left(x-y\right)\left(3a+b\right)\)
c) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)
\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)
\(=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-yx+y^2-y^2\right]\)
\(=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)\)
d) Ta có: \(2ax^3+6ax^2+6ax+18a\)
\(=2ax^2\left(x+3\right)+6a\left(x+3\right)\)
\(=\left(x+3\right)\left(2ax^3+6a\right)\)
\(=2a\left(x+3\right)\left(x^3+3\right)\)
e) Ta có: \(x^2y-xy^2-3x+3y\)
\(=xy\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-3\right)\)
a) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
b) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left[3\left(x+y-1\right)\right]^2-\left[2\left(2x+3y+1\right)\right]^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3+4x+6y+2\right)\left(3x+3y-3-4x-6y-2\right)\)
\(=\left(7x+9y-1\right)\left(-x-3y-5\right)\)
c) \(-4x^2+12xy-9y^2+25\)
\(=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+5^2\)
\(=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2-5^2\right]\)
\(=-\left[\left(2x-3y\right)^2-5^2\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-4m\left(m-n\right)-n^2\)
\(=\left(x-y\right)^2-4m\left(m-n\right)-n^2\)
\(=\left(x-y-n\right)\left(x-y+n\right)-4m\left(m-n\right)\)
a)x3-6x2+9x=x(x2-6x+9)=x(x-3)2
b)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)
c)x2-x+xy-y=x(x-1)+y(x-1)=(x-1)(x+y)
d)3x2-6xy-75+3y2=3[(x2-2xy+y2)-25]=3[(x-y)2-52]=3(x-y-5)(x-y+5)
e)2x2-5x-7=(2x2+2x)-(7x+7)=2x(x+1)-7(x+1)=(x+1)(2x-7)
f)x4+36=x4+12x2+36-12x2=(x2+6)2-12x2=(x2-\(\sqrt{12}x\)+6)(x2+\(\sqrt{12}x\)+6)
h)x4+4y4=x4+4x2y2+4y2-4x2y2=(x2+2y2)-4x2y2=(x2+2y2-2xy)(x2+2y2+2xy)
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
b) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=3y^2\left(x^4+x^3+x+1\right)\)
d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)
\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)
\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)
P/s: Ko chắc!
c/
\(=3y^2\left(x^4+x^3+x+1\right)\)
\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)
\(=3y^2\left(x^3+1\right)\left(x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
d/
\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)
\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)
\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)
\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)