Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔOAI và ΔOBI có
OA=OB
góc AOI=góc BOI
OI chung
=>ΔOAI=ΔOBI
b: ΔOAB cân tại O
mà OH là phân giác
nên OH vuông góc BA và H là trung điểm của BA
Xét ΔIHA vuông tại H và ΔIHB vuông tại H có
IH chung
HA=HB
=>ΔIHA=ΔIHB
c: IH vuông góc AB
=>ΔIHA vuông tại H, ΔIHB vuông tại H
Hình bạn tự vẽ nha
Xét \(\Delta AIO\) và \(\Delta BIO\) có:
OI chung
\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))
OA = OB (gt)
\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)
b) Vì \(\Delta AIO = \Delta BIO\) (cmt)
\(\Rightarrow IB=IA\) (2 cạnh tương ứng)
mà OA = OB (gt)
\(\Rightarrow OI\) là đường trung trực của AB
hay \(AB \perp OI\)
b ) cách 2
Xét tam giác OAH và OBH
OA = OB ( gt)
góc AOH = góc BOA ( Oz là phân giác )
OH cạnh chung
=> tam giác OAH = tam giác OBH ( c.g.c)
=> góc AHO = góc BHO ( 2 góc tương ứng )
mà góc AHO + BHO = 180 độ
=> AHO = BHO = 180/2 = 90 độ
=> AB vuông góc với Oz tại H
chứng minh hộ vs: đầu bài như thế nhưng thêm câu là: C/Minh : MA=MB
a) xét ΔAOI,ΔBOIΔAOI,ΔBOI có :
OA = OB ( GT )
OI cạnh chung
AOIˆAOI^ = BOIˆBOI^ ( vì Oz phân giác xOyˆxOy^ )
⇒ΔAOI=ΔBOI(c.g.c)⇒ΔAOI=ΔBOI(c.g.c)
b )
gọi H là giao điểm AB , OI
xét ΔOAH,ΔOBHΔOAH,ΔOBH có
OH chung
AOHˆAOH^ = BOHˆBOH^ ( OI phân giác xOyˆxOy^ )
OA = OB ( GT )
⇒ΔOAH=ΔBOH(c.g.c)⇒ΔOAH=ΔBOH(c.g.c)
ta có : AHOˆAHO^ = BHOˆBHO^ ( 2 góc tương ứng )
mà AOHˆAOH^ + BHOˆBHO^ = 180o ( 2 góc kề bù )
⇒AOHˆ⇒AOH^ = BHOˆBHO^ = 180O2180O2 = 90o
⇒AB⊥OI⇒AB⊥OI tại H
link mình nha
a) Xét tam giác \(OIA\) và tam giác \(OIB\) có:
\(OA=OB\)
\(\widehat{AOI}=\widehat{BOI}\)
\(OI\) cạnh chung
suy ra \(\Delta OIA=\Delta OIB\) (c.g.c)
b) Xét tam giác \(OIN\) và tam giác \(OIM\):
\(\widehat{ION}=\widehat{IOM}\)
\(OI\) cạnh chung
\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)
suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)
\(\Rightarrow IN=IM\)
c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).
Xét tam giác \(INA\) và tam giác \(IMB\):
\(IA=IB\)
\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)
\(IN=IM\)
suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)
d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)
suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).
a
cạnh chung oi
oa=ob
O1=o2
(vì p giác mà)
b
ta phai cmr tam giác oia hoặc oib là tam giác vuông