Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
a) 3A = 3. ( 30 + 31 + 32 +...+ 311)
3A = 31 + 32 +33 +....+ 312
3A - A = 31 +32+33 +...+312 - 30 - 31-32- ...- 311
2A = 312 -1
A = (312 -1) : 2
b) A = ( 30 + 31 + 32 33) + .... + ( 38 + 39 + 310 + 311)
A = 40 + ... + 38 . ( 30 + 31 +32 +33)
A = 40 + ... + 38 .40
A = 40 . ( 1 + ...+ 38)
Vì 40 chia hết cho 40
=> 40. ( 1 + ...+38) chia hết cho 40
Vậy A chia hết cho 40
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
Bài 1:
ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Mà 11(a+b) chia hết cho 11
=> ab+ba chia hết cho 11
Bài 1:
Ta có : \(\overline{ab}\)+ \(\overline{ba}\)
\(=10a+b+10b+a\)
\(=11a+11b\)
Ta thấy \(\overline{11a}\)chia hết cho 11 ; \(\overline{11b}\)chia hết cho 11
\(\Rightarrow\)\(\overline{ab}\)\(+\)\(\overline{ba}\)chia hết cho 11
a.=> 3A=3+3^2+3^3+...+3^21
=> 2A=3^21-1
=> A=(3^21-1):2
B-A=3^21:2-(3^21-1):2=(3^21-3^21+1):2=1:2
b. C=(11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1)
vì 11^n luôn có tận cùng là 1
=> (11^9+11^8+11^7+11^6+11^5) có tận cùng là 5
và (11^4+11^3+11^2+11+1) có tận cùng là 5
=> (11^9+11^8+11^7+11^6+11^5) chia hết cho 5 (1)
và (11^4+11^3+11^2+11+1) chia hết cho 5 (2)
Từ (1)(2) => (11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1) chia hết cho 5
=> C chia hết cho =>DPCM