Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A = 3 + 32 + .... + 321
3A - A = (3 - 3) + (32 - 32) + ..... + (320 - 320) + 321 - 1
2A = 321 - 1
Vậy A = \(\frac{3^{21}-1}{2}\)
Nên B - A= \(\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{3^{21}}{2}-\frac{3^{21}}{2}+\frac{1}{2}=\frac{1}{2}\)
2) Ta có lũy thừa của số tận cùng là 1 luôn có chữ số tận cùng là 1
C = (....1) + (...1) + ..... + (....1)
C = ..............0
C tận cùng là 0 => Chia hết cho 5
bai1
(2+22)+(23+24)+...+(259+260)
=(2+22+23)+...+(258+259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=3.2+3.23+3.59chia hết cho 3 vì có số 3
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...
a.=> 3A=3+3^2+3^3+...+3^21
=> 2A=3^21-1
=> A=(3^21-1):2
B-A=3^21:2-(3^21-1):2=(3^21-3^21+1):2=1:2
b. C=(11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1)
vì 11^n luôn có tận cùng là 1
=> (11^9+11^8+11^7+11^6+11^5) có tận cùng là 5
và (11^4+11^3+11^2+11+1) có tận cùng là 5
=> (11^9+11^8+11^7+11^6+11^5) chia hết cho 5 (1)
và (11^4+11^3+11^2+11+1) chia hết cho 5 (2)
Từ (1)(2) => (11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1) chia hết cho 5
=> C chia hết cho =>DPCM