Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
Quy đồng : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
\(\Rightarrow\begin{cases}\frac{x}{9}=3\Rightarrow x=3.9=27\\\frac{x}{12}=3\Rightarrow x=3.12=36\\\frac{x}{20}=3\Rightarrow x=3.20=60\end{cases}\)
Vậy .......................
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{3}.\frac{1}{4}=\frac{z}{5}.\frac{1}{4}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ (1) và (2); ta được:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)
A >= |x-2+3-x| = 1
Dấu "=" xảy ra <=> (x-2).(3-x) >= 0 <=> 2 < = x < = 3
Vậy GTNN của A = 1 <=> 2 < = x < = 3
Tk mk nha
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)