K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2023

đề bài lỗi bn ơi

29 tháng 1 2023

ib rieng bn

 

11 tháng 12 2022

giú mới ạ mái em noppj rồikhocroi

27 tháng 11 2021

bạn ktra lại đề ở chỗ 2/3/-x 

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

29 tháng 3 2020

Bài 1 :

Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)

Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)

Vậy phương trình vô nghiệm .

Bài 3 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)

Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)

=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)

=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)

Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)

=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)

=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)

=> \(m^2+2=m\left(m-2\right)\)

=> \(-2m=2\)

=> \(m=-1\) ( TM )

Vậy m có giá trị bằng 1 khi A = 1 .

b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

=> \(m^2+2=m^2+3m-2\)

=> \(3m=4\)

=> \(m=\frac{4}{3}\)

Vậy với A = B thì m có giá trị là 4/3 .

d, Ta có : A + B = 0 .

=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)

=> \(2m^2+3m=0\)

=> \(m\left(2m+3\right)\)=0

=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)

Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .

29 tháng 3 2020

Hack não