K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

13 tháng 11 2023

a: \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\dfrac{2^{101}-2}{3}\)

b: Sửa đề: \(A=\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)

\(A=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)

\(=\dfrac{2^{11}\cdot3^6\left(2^3+3^3\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)

\(=\dfrac{2}{3}\cdot\dfrac{4+27}{16+15}=\dfrac{2}{3}\)

c: \(B=\dfrac{4^5\cdot9^4-2\cdot6^4}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^4\cdot3^4}{2^{10}\cdot3^8+2^8\cdot2^2\cdot5\cdot3^8}\)

\(=\dfrac{2^5\cdot3^4\left(2^5\cdot3^4-1\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{1}{2^5\cdot3^4}\cdot\dfrac{32\cdot81-1}{6}\)

\(=\dfrac{2591}{2^6\cdot3^5}\)

 

13 tháng 11 2023

help

 

26 tháng 10 2023

a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)

=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)

=>\(4A=3^{101}-3\)

=>\(A=\dfrac{3^{101}-3}{4}\)

b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)

=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)

=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)

=>\(-3B=-2^{2025}-1\)

=>\(B=\dfrac{2^{2025}+1}{3}\)

c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)

=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)

=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)

=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)

=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)

=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)

Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)

=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(3S=2^{101}-2\)

=>\(S=\dfrac{2^{101}-2}{3}\)

22 tháng 1

Chịuuuuuuu

10 tháng 7 2018

297 . 299

= 297 . ( 298 + 1 )

= 297 . 298 + 297

2982 = 298 . 298

        = ( 297 + 1 ) . 298

        = 297 . 298 + 298

Mà 297 . 298 + 297 < 297 . 298 + 298 nên 297 . 299 < 2982 ( đpcm )

5 tháng 3 2021

Đặt :

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)

\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)

\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)

Vậy..

17 tháng 6 2016

SSH: (399-1):2+1= 200
Neu chia moi nhom 4 so thi so cap so la:
200:4 = 50
Ta co:
B=1+3-5-7+9+11-13-15+...+393+395-397-399
B= (1+3-5-7)+(9+11-13-15)+...+(393+395-397-399)
B= -8 + -8 +...+ -8
B= -8 . 50
B= -400

17 tháng 6 2016

SSH: (399-1):2+1= 200
Neu chia moi nhom 4 so thi so cap so la:
200:4 = 50
Ta co:
A=1+3-5-7+9+11-13-15+...+393+395-397-399
A= (1+3-5-7)+(9+11-13-15)+...+(393+395-397-399)
A= -8 + -8 +...+ -8
A= -8 . 50

A= -400