Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.
Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$
b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$
a: Mệnh đề sai
Vd: x=1 thì \(x^2=1< 4\)
b: Mệnh đề đúng
c: Mệnh đề đúng
d: Mệnh đề sai
Vì \(x^2>4\) thì hoặc là x>2 hoặc cũng có thể là x<-2
Đáp án: B
f(x)2 + g(x)2 = 0 ⇔ f(x) = 0 và g(x) = 0. Nghĩa là H là tập hợp bao gồm các phần tử vừa thuộc E vừa thuộc F hay H = E ∩ F
Đáp án: C
f(x)/g(x) = 0 ⇔ f(x) = 0 và g(x) ≠ 0. Nghĩa là H là tập hợp bao gồm các phần tử thuộc E nhưng không thuộc F hay H = E \ F.