K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

Trên tia Ox lấy điểm A. trên tia đối của tia Ox lấy điểm B sao cho OA = OB = 3cm . Trên tia AB lấy điểm M, trên tia BA lấy điểm N sao cho AM = BN = 1cm.Chứng tỏ O là trung điểm của AB và MN

8 tháng 7 2023

a) \(OA>OB\) nên A nằm giữa O và B 

Ta có: \(OB=OA+AB\Rightarrow AB=OB-OA=6-3=3\left(cm\right)\)

Mà: \(OA=AB=3\left(cm\right)\)

Vậy A nằm chính giữa O và B vậy A là trung điểm của OB 

b) Ta có: \(OC=1\left(cm\right)\) mà \(AC=OC+OA=1+3=4\left(cm\right)\)

\(\Rightarrow AC>AB\left(4>3\right)\)

17 tháng 12 2023

1: Xét ΔAOM và ΔBOM có

OA=OB

OM chung

AM=BM

Do đó: ΔOAM=ΔOBM

2: Xét ΔMNA và ΔMOB có

MN=MO

\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)

MA=MB

Do đó: ΔMNA=ΔMOB

3: Ta có: ΔMNA=ΔMOB

=>NA=OB

Ta có: ΔMNA=ΔMOB

=>\(\widehat{MNA}=\widehat{MOB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//OB

Ta có: OB=AN

\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)

\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)

Do đó: OK=KB=AH=HN

Xét tứ giác OKNH có

OK//NH

OK=NH

Do đó: OKNH là hình bình hành

=>ON cắt KH tại trung điểm của mỗi đường

mà M là trung điểm của ON

nên M là trung điểm của KH

=>K,M,H thẳng hàng

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

14 tháng 12 2021

a) Xét tam giác tam giác ABO và tam giác CDO có:

+ OB = OD (gt).

+ OA = OC (gt).

+  ^AOB = ^COD (2 góc đối đỉnh).

=> Tam giác ABO = Tam giác CDO (c - g - c).

b) Xét tứ giác ABCD có:

+ O là trung điểm của AC (do OA = OC).

+ O là trung điểm của BD (do OB = OD).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AB // CD (Tính chất hình bình hành).

c) Xét tam giác ABC có:

+ M là trung điểm của AB (gt).

+ O là trung điểm của AC (do OA = OC).

=> MO là đường trung bình.

=> MO // BC (Tính chất đường trung bình trong tam giác). (1)

Xét tam giác BDC có:

+ N là trung điểm của CD (gt).

+ O là trung điểm của BD (do OB = OD).

=> NO là đường trung bình.

=> NO // BC (Tính chất đường trung bình trong tam giác). (2)

Từ (1) và (2) => 3 điểm M; O; N thẳng hàng (đpcm).