Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left\{0;1;2;3;4;5\right\}\)
b: \(B=\left\{2;3;4;5\right\}\)
c: \(C=\left\{0;1;-1;2;-2;3;-3\right\}\)
a: \(=\left(x^4-4\right)+5x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)
b: \(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
c: \(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
a: A={0;1;2;3}
b: B={-16;-13;-10;-7;-4;-1;2;5;8}
c: C={-9;-8;-7;...;7;8;9}
d: \(D=\varnothing\)
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
a:=>x+1=0 và y-2=0
=>x=-1 và y=2
b: \(\Leftrightarrow\left(x-5;y-7\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;8\right);\left(4;6\right)\right\}\)
c: (x+4)(y-2)=2
=>\(\left(x+4;y-2\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-3;4\right);\left(-2;3\right);\left(-5;0\right);\left(-6;1\right)\right\}\)
f: =>(x-12)(y-6)=-2
=>\(\left(x-12;y-6\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(13;4\right);\left(10;7\right);\left(11;8\right);\left(14;5\right)\right\}\)
a: ĐKXĐ của A là x<>1; x<>-3
ĐKXĐ của B là x<>4
ĐKXĐ của C là x<>0; x<>2
ĐKXĐ của D là x<>3
ĐKXĐ của E là x<>0; x<>2
b: \(A=\dfrac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x}{x-1}\)
Để A=0 thì 2x=0
=>x=0
\(B=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)
Để B=0 thì x+4=0
=>x=-4
\(C=\dfrac{x\left(x+2\right)}{x\left(x-2\right)}=\dfrac{x+2}{x-2}\)
Để C=0 thì x+2=0
=>x=-2
\(D=\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x+4}{x^2+3x+9}\)
Để D=0 thi x+4=0
=>x=-4
\(E=\dfrac{2x\left(x^2+2x+1\right)}{2x\left(x-2\right)}=\dfrac{\left(x+1\right)^2}{x-2}\)
Để E=0 thì (x+1)^2=0
=>x=-1
a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)
c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)
e, ntc: x-y
f, đối dấu --> ntc
g, như ý f
h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)
i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)
thanks