Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Ax//By\Rightarrow\widehat{ABy}=\widehat{BAx}=120^0\left(so.le.trong\right)\\ b,\widehat{ABy}=\widehat{BCz}\left(=120^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(By//Cz\)
Mà \(By//Ax\) nên \(Cz//Ax\)
Vậy có 3 cặp tia song song là \(Ax//By;By//Cz;Cz//Ax\)
Bạn có thể vẽ ra tập rồi trả lời câu hỏi mới dễ bạn à.
Còn trên đây mk ko biết vẽ hình.
Hoặc bạn có thể vào học 24 hoặc câu hỏi tương tự tham khảo.
Chúc bạn học tốt !
Hai đường thẳng a và b song song với nhau do cùng vuông góc với đường thẳng thứ ba
b)a//b
góc x trong cùng phía với góc 75 độ
->75 độ+x=180
->=180-75=105 độ
Hình a sai ; Hình b đúng ; Hình c đúng ; Hình d sai
Tên các điểm được thể hiện trong hình dưới:
Ta có \(\widehat{B_1}=\widehat{B_3}=47^0\left(đối.đỉnh\right)\)
\(\Rightarrow\widehat{B_3}+\widehat{A_1}=47^0+133^0=180^0\)
Mà 2 góc này ở vị trí trong cùng phía nên a//b
Kẻ tia Ax' là tia đối của tia Ax
Khi đó:
x ' A B ^ = u B y ^ = 60 °
⇒ A x ' // B y
Cũng có:
x ' A C ^ = 80 ° − 60 ° = 20 ° .
⇒ x ' A C ^ + A C z ^ = 180 °
⇒ A x ' // C z .
Do đó các tia A x , B y , C z nằm trên ba đường thẳng song song với nhau
1, Vì \(a\perp BC;b\perp BC\) nên a//b
2, Ta có \(\widehat{A_1}=\widehat{A_2}=60^0\left(đối.đỉnh\right)\)
Vì a//b nên \(\widehat{A_2}=\widehat{D_1}=60^0\left(đồng.vị\right)\)
Ta có \(\widehat{D_2}+\widehat{D_1}=180^0\left(kề.bù\right)\Rightarrow\widehat{D_2}=180^0-60^0=120^0\)