Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOPQ có
I là trung điểm của PQ
IN//OP
Do đó: N là trung điểm của OQ
Xét ΔOPQ có
I là trung điểm của PQ
IM//OQ
Do đó: M là trung điểm của OP
Xét ΔMPI và ΔNQI có
MP=NQ
\(\widehat{P}=\widehat{Q}\)
PI=QI
Do đó: ΔMPI=ΔNQI
Suy ra: IM=IN
hay ΔIMN cân tại I
2: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Bài 9:
1: Xét ΔABC có
E,K lần lượt là trung điểm của AB,AC
=>EK là đường trung bình của ΔABC
2: Vì EK là đường trung bình của ΔABC
nên EK//BC và \(EK=\dfrac{1}{2}BC\)
=>EI//BH
Xét ΔABH có
E là trung điểm của AB
EI//BH
Do đó: I là trung điểm của AH
3: \(EK=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
bài 10:
1: Xét ΔADC có
M là trung điểm của AD
MN//DC
Do đó: N là trung điểm của AC
Xét hình thang ABCD có
M là trung điểm của AD
MK//AB//CD
Do đó: K là trung điểm của BC
2: \(AB=\dfrac{1}{2}DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
Xét ΔADC có
M,N lần lượt là trung điểm của AD,AC
=>MN là đường trung bình của ΔADC
=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)
Xét ΔCAB có
N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCAB
=>\(NK=\dfrac{1}{2}AB=5\left(cm\right)\)
MK=MN+NK
=10+5
=15(cm)
Bài 8:
1: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
2: Sửa đề: EF=1/2BC
Xét ΔACB có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình của ΔACB
=>\(EF=\dfrac{1}{2}CB\)
3: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là phân giác của góc EAF
Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có AM là phân giác của góc EAF
nên AEMF là hình thoi
=>AE=MF=FM=AF