K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

a, Vì \(\widehat{CEI}=\widehat{CFI}=\widehat{ECF}=90^0\) nên CEIF là hcn

b, Vì I là trung điểm AB mà FI//BC (⊥AC) nên F là trung điểm AC

Mà F là trung điểm IH (t/c đối xứng) nên CHFE là hbh

29 tháng 10 2021

bạn có thể làm hết , ko thiếu câu nào ko ???

tui thấy bạn bỏ câu hoài ??"

 

3 tháng 3 2020

A B C O D H P Q I

a. Xét tứ giác ADOH có:\(\widehat{ODA}=90^o;\widehat{DAH}=90^o;\widehat{OHA}=90^o\)

\(\Rightarrow\) ADOH là hình chữ nhật ( tứ giác có 3 góc vuông )

b. Ta có: P là điểm đối cứng của D qua O ⇒ O là trung điểm của DP(1)

Q là điểm đối xứng của H qua O ⇒ O là trung điểm của QH(2)

Ta có: \(AB\perp AC;QH\perp AC̸\) ⇒ AB//QH

Lại có: DB//QO;DB⊥DP⇒QH⊥DP(3)

Từ(1),(2),(3)⇒Tứ giác QDHP là hình thoi(Tứ giác có 2 đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường)

31 tháng 5 2020

Phần a là HBA ~ ABC chứ nhỉ?

a, Xét tam giác HBA và tam giác ABC có:

góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)

góc B chung

\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)

b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)

Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)

Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)

\(\Delta\)HAC ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)

c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA

\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)

BC2 = 152 + 202

BC2 = 625

BC = \(\sqrt{625}\) = 25 (cm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)

hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)

Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)

\(\Delta\)HBA ~ \(\Delta\)HAC (cmt)

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)

\(\Rightarrow\) \(AH^2=16\cdot9=144\)

\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)

d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)

\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)

hay \(\frac{20-CD}{15}=\frac{CD}{25}\)

\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)

\(\Rightarrow\) 5(20 - CD) = 3CD

\(\Leftrightarrow\) 100 - 5CD = 3CD

\(\Leftrightarrow\) 3CD + 5CD = 100

\(\Leftrightarrow\) 8CD = 100

\(\Leftrightarrow\) CD = 12,5 (cm)

\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)

e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!

Xét tam giác CMD và tam giác CAB có:

góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)

góc C chung

\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)

Chúc bn học tốt!! (Dài quá :vvv)

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\) chung

Do đó: ΔHBA∼ΔABC(g-g)(1)

Xét ΔHAC và ΔABC có

\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\) chung

Do đó: ΔHAC∼ΔABC(g-g)(2)

Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)

b) Ta có: ΔHBA∼ΔABC(cmt)

\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)

hay \(AB^2=BC\cdot BH\)(đpcm)

Ta có: ΔHAC∼ΔABC(cmt)

\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)

hay \(AC^2=BC\cdot HC\)(đpcm)

Ta có: ΔHBA∼ΔHAC(cmt)

\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)

hay \(HA^2=HB\cdot HC\)(đpcm)

c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(BC^2=15^2+20^2=625\)

hay \(BC=\sqrt{625}=25cm\)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

\(15^2=25\cdot BH\)

\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)

Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)

\(\frac{HA}{15}=\frac{20}{25}\)

\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)

Vậy: BC=25cm; BH=9cm; HA=12cm

d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)

hay \(\frac{AD}{15}=\frac{CD}{25}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

hay AD+CD=20cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)

Vậy: AD=7,5cm; CD=12,5cm

e) Đề sai rồi bạn

27 tháng 11 2017

Các bạn làm nhanh hộ mik nha! Thank you mấy bạn nhiều lắm!

30 tháng 3 2018

A B E C F

a) Xét \(\Delta\)EBA và \(\Delta\)ABC có:

\(\widehat{BEA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\) \(\Delta\)EBA đòng dạng vs \(\Delta\)ABC (g - g)

\(\Rightarrow\) \(\dfrac{BE}{AB}=\dfrac{AB}{BC}\)

\(\Rightarrow\) AB2 = BE . BC

b) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 32 . 42

= 25

\(\Rightarrow\) BC = \(\sqrt{25}\) = 5(cm)

Vì: AB2 = BC.BE (cmt)

\(\Rightarrow\) BE = \(\dfrac{AB^2}{BC}\)

= \(\dfrac{3^2}{5}\) = 1.8(cm)

Xét \(\Delta\)BEA vuông tại E có:

AE2 = AB2 + BE2

= 32 + 1.82

= \(\dfrac{306}{25}\)

\(\Rightarrow\)AE = \(\sqrt{\dfrac{306}{25}}\) = \(\dfrac{3\sqrt{34}}{5}\)(cm)

c) Trong \(\Delta\)ABC có BF là tia phân giác của góc B

\(\Rightarrow\) \(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)

Áp dụng t/chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)\(=\dfrac{AF+CF}{AB+BC}=\dfrac{AC}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AF}{3}=\dfrac{1}{2}\Rightarrow AF=1.5\left(cm\right)\)

Trong \(\Delta\)ABF vuông tại A có:

BF2 = AB2 + AF2

= 32 + 1.52

= 11.25

\(\Rightarrow\) BF = \(\sqrt{11.25}\) = \(\dfrac{3\sqrt{5}}{2}\)(cm)

Bài 1: Tìm n để \(8n^2+10n+3\) là số nguyên tố Bài 2: Giải phương trình: a)\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\) b)\(4x^2-4xy+5y^2+4y+1=0\) Bài 3:Cho hình vuông ABCD, E là một điểm nằm trong hình vuông sao cho \(\Lambda EBC\)=\(\text{​​}\text{​​}\Lambda ECB\)=\(15^0\); F là một điểm nằm ngoài hình vuông sao cho \(\Lambda\)FDC=\(\Lambda\)FCD=60\(^0\) Chứng minh rằng: a) Tam giác AED đều b) Ba điểm...
Đọc tiếp

Bài 1: Tìm n để \(8n^2+10n+3\) là số nguyên tố

Bài 2: Giải phương trình:

a)\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\)

b)\(4x^2-4xy+5y^2+4y+1=0\)

Bài 3:Cho hình vuông ABCD, E là một điểm nằm trong hình vuông sao cho \(\Lambda EBC\)=\(\text{​​}\text{​​}\Lambda ECB\)=\(15^0\); F là một điểm nằm ngoài hình vuông sao cho \(\Lambda\)FDC=\(\Lambda\)FCD=60\(^0\)

Chứng minh rằng: a) Tam giác AED đều

b) Ba điểm B,E,F thẳng hàng

Bài 4: tinha số cạnh của một đa giác đều biết tổng số đo tất cả các góc ngoài và một góc trong bằng 504\(^0\)

Bài 5: Hài đường trung tuyến AM và BN của tam giác ABC cắt nhau tại G. Tính diện tích tam giác ABC biết diện tích tam giacAGB=336 cm\(^2\)

Bài 6: Cho tam giác ABC nhọn, ba đường cao AH,BI,CK cắt nhau tại O.

CMR: \(\frac{HO}{HA}+\frac{IO}{IB}+\frac{KO}{KC}=1\)

Bài 7: Giải phương trinh:

a) (x+3)\(^3\)-(x-1)\(^3\)=56

b)x\(^3\)+(x-1)\(^3\)=(2x-1)\(^3\)

c)(x\(^2\)+1)\(^2\)+3x(x\(^2\)+1)+2x\(^2\)=0

d)(x-1)\(^3\)+(3-2x)\(^3\)+(x-2)\(^3\)=0

1
29 tháng 1 2020

Bài 4:

Tổng số đo các góc ngoài của đa giác bằng \(360^0.\)

Theo đề bài ta có số đo một góc trong của đa giác đều là:

\(504^0-360^0=144^0.\)

Gọi n là số cạnh của đa giác đều. Ta có số đo mỗi góc của đa giác đều bằng:

\(\frac{\left(n-2\right).180^0}{n}\)

\(\Rightarrow\frac{\left(n-2\right).180^0}{n}=144^0\) \(\Rightarrow\left(n-2\right).180^0=144^0.n\)
\(\Rightarrow180^0.n-360^0=144^0.n\) \(\Rightarrow180^0.n-144^0.n=360^0\) \(\Rightarrow36.n=360^0\) \(\Rightarrow n=360^0:36\) \(\Rightarrow n=10\left(cạnh\right).\) Vậy đa giác đều cần tìm có 10 cạnh. Chúc bạn học tốt!
29 tháng 1 2020

tks bn