K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

Xét ΔADC có MI//DC

nên \(\dfrac{MI}{DC}=\dfrac{AM}{AD}=\dfrac{1}{2}\)

=>\(\dfrac{MI}{12}=\dfrac{1}{2}\)

=>\(MI=6\left(cm\right)\)

Xét hình thang ABCD có

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét hình thang ABCD có

M,N lần lượt là trung điểm của AD,BC

=>MN là đường trung bình của hình thang ABCD

=>\(MN=\dfrac{AB+CD}{2}=\dfrac{6+12}{2}=\dfrac{18}{2}=9\left(cm\right)\)

24 tháng 12 2023

cho mình xin cái hình được ko

 

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{OA}{OC}=\dfrac{2}{3}\)

=>\(OC=1,5OA\)

\(\dfrac{OB}{OD}=\dfrac{2}{3}\)

=>\(OD=3\cdot\dfrac{OB}{2}=1,5OB\)

AO+OC=AC

=>1,5OA+OA=OC

=>OC=2,5OA

=>\(\dfrac{OC}{OA}=2,5=\dfrac{5}{2}\)

=>\(\dfrac{OA}{OC}=\dfrac{2}{5}\)

OB+OD=BD

=>BD=1,5OB+OB=2,5OB

=>\(\dfrac{OB}{BD}=\dfrac{2}{5}\)

Xét ΔADC có MO//DC

nên \(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)

=>\(\dfrac{MO}{9}=\dfrac{2}{5}=0,4\)

=>MO=0,4*9=3,6(cm)

Xét ΔBDC có ON//DC

nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\)

=>\(\dfrac{ON}{9}=\dfrac{2}{5}\)

=>ON=0,4*9=3,6(cm)

MN=MO+ON

=3,6+3,6

=7,2(cm)

21 tháng 7 2021

a/
△ACD có:
- MN lần lượt đi qua trung điểm của AD và AC tại M và N
=> MN là đường trung bình của △ACD
Mặt khác, hình thang ABCD có:
- MP lần lượt đi qua trung điểm của AD và BC tại M và P
=> MP là đường trung bình của hình thang ABCD
=> MN trùng MP 
Vậy: M, N, P thẳng hàng. (đpcm)

b/
- MN là đường trung bình của △ACD (cmt)
=> \(MN=\dfrac{1}{2}CD\) 
Hay: \(MN=\dfrac{1}{2}.7=3,5\left(cm\right)\)
- MP là đường trung bình của hình thang ABCD (cmt)
=> \(MP=\dfrac{1}{2}AB.CD\)
Hay: \(MP=\dfrac{5+7}{2}=6\left(cm\right)\)
\(NP=MP-MN\)
Hay: \(NP=6-3,5=2,5\left(cm\right)\)
- Nhận xét: Độ dài MP = 1/2 tổng độ dài hai đáy AB và CD
Vậy:
\(MN=3,5\left(cm\right)\)
\(NP=2,5\left(cm\right)\)
\(MP=6\left(cm\right)\)