K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
\(\widehat{BAH}\) chung

Do đó:ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó:ΔKBC=ΔHCB

Suy ra: \(\widehat{MBC}=\widehat{MCB}\)

hayΔMBC cân tại M

Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc A

c: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

23 tháng 2 2022

a, Xét tam giác AHB và tam giác AKC có 

^A_chung 

AB = AC 

Vậy tam giác AHB ~ tam giác AKC ( ch-gn ) 

=> AH = AK ( 2 cạnh tương ứng )

b, Xét tam giác ABC cân tại A

có BH ; CK lần lượt là đường cao 

mà BK giao CK = D vậy D là trực tâm 

hay AD là đường cao thứ 3 trong tam giác 

=> AD đồng thời là đường phân giác 

c, Ta có AH = AK ; AB = AC 

=> HK // BC ( Ta lét đảo _)

7 tháng 5 2017

27 tháng 2 2022

mọi người giúp mk với ạ. Mk cảm ơn trước nha

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

Do đó: ΔAKI=ΔAHI

Suy ra: \(\widehat{KAI}=\widehat{HAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

d: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

e: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

26 tháng 7 2017

Toán lp 7 hả mk ko quen

Năm nay mk mới chỉ lên lớp 7 thôi

Năm nay mk mới được học kiến thức của lp 7 lên mk ko thể giải được bài toán này

Những xin bn Nguyễn Thị Thanh Hải hãy cho mk 1 L-I-K-E

~Chúc bn Nguyễn Thị Thanh Hải học giỏi~ 

     Gặp nhiều may mắn trong cuộc sống

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:
a. Xét tam giác $ABH$ và $ACK$ có:

$AB=AC$

$\widehat{A}$ chung

$\widehat{AHB}=\widehat{AKC}=90^0$

$\Rightarrow \triangle ABH=\triangle ACK$ (ch-gn)

$\Rightarrow AH=AK$

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{B_1}=\widehat{C_1}$

Vì $AB=AC; AK=AH\Rightarrow AB-AK=AC-AH$

$\Rightarrow BK=CH$

Xét tam giác $KBI$ và $HCI$ có:

$\widehat{B_1}=\widehat{C_1}$

$\widehat{BKI}=\widehat{CHI}=90^0$

$BK=CH$

$\Rightarrow \triangle KBI=\triangle HCI$ (c.g.c)

$\Rightarrow BI=CI$

Xét tam giác $ABI$ và $ACI$ có:
$AB=AC$

$AI$ chung

$BI=CI$

$\Rightarrow \triangle ABI=\triangle ACI$ (c.c.c)

$\Rightarrow \widehat{BAI}=\widehat{CAI}$

$\Rightarrow AI$ là phân giác $\widehat{A}$

$

AH
Akai Haruma
Giáo viên
6 tháng 2

Hình vẽ: