Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a(giờ) và b(km/h) lần lượt là thời gian và vận tốc dự định(Điều kiện: a>0; b>0)
Vì khi ô tô tăng vận tốc lên 8km/h thì đến B sớm hơn 1h nên ta có phương trình:
\(\left(a-1\right)\left(b+8\right)=ab\)
\(\Leftrightarrow ab+8a-b-8=ab\)
\(\Leftrightarrow8a-b=8\)(1)
Vì khi ô tô giảm vận tốc 4km/h thì đến B chậm hơn dự định 40 phút nên ta có phương trình:
\(\left(a+\dfrac{2}{3}\right)\left(b-4\right)=ab\)
\(\Leftrightarrow ab-4a+\dfrac{2}{3}b-\dfrac{8}{3}=ab\)
\(\Leftrightarrow-4a+\dfrac{2}{3}b=\dfrac{8}{3}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}8a-b=8\\-4a+\dfrac{2}{3}b=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a-b=8\\-8a+\dfrac{4}{3}b=\dfrac{16}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}b=\dfrac{40}{3}\\8a-b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=40\\8a=8+b=48\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=40\end{matrix}\right.\)(thỏa ĐK)
Vậy: Thời gian dự định là 6 giờ
Vận tốc dự định là 40km/h
áp án: V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
Gọi vận tốc dự định và thời gian dự định là x và y (x,y>0). Theo đề bài ta có:
Nếu thời gian tăng thêm 14 km/h thì đến B sớm hơn 2 giờ nên ta có phương trình: \(\left(x+14\right)\left(y-2\right)=xy\Leftrightarrow xy-2x+14y-28=xy\Leftrightarrow-2x+14y=28\Leftrightarrow-x+7y=14\left(1\right)\)(do cả hai tích trên đều bằng độ dài quãng đường)
Nếu giảm vận tốc đi 4km/h thì đến B muộn 1 h nên ta có phương trình:
\(\left(x-4\right)\left(y+1\right)=xy\Leftrightarrow xy+x-4y-4=xy\Leftrightarrow x-4y=4\left(2\right)\) (do cả hai tích đều bằng độ dài quãng đường)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}-x+7y=14\left(1\right)\\x-4y=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được :
3y=18 ⇔ y=6 Thay vào (2) ta được: \(x-6\cdot4=4\Leftrightarrow x=4+24=28\)
Vậy vận tốc dự định và thời gian dự định là 28km/h và 6h
40 phút = \(\dfrac{2}{3}h.\)
Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)
thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)
\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)
Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:
\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)
Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)
Từ (1) và (2), ta có hpt:
\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)
Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.
Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)
(ĐK:v>10,t>\(\dfrac{2}{3}\))
Ta có quãng đường AB dài:vt(km)(1)
_Nếu xe giảm vận tốc đi 10 km thì:
+Vận tốc của xe là:v-10(km/h)
+Thời gian xe đi từ A đến B là:t+1(h)
\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)
_Nếu xe tăng vận tốc thêm 10 km thì:
+Vận tốc của xe là:v+10(km/h)
+Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)
\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)
Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt
\(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)
Vậy.........................................................................................
Lời giải:
Gọi vận tốc dự định là $a$ km/h
Thời gian dự định: $\frac{AB}{a}$ (giờ)
Thời gian khi tăng vận tốc 8km/h: $\frac{AB}{a+8}$ (giờ)
Thời gian khi giảm vận tốc 4km/h: $\frac{AB}{a-4}$ (giờ)
Ta có:
\(\left\{\begin{matrix} \frac{AB}{a}-\frac{AB}{a+8}=1\\ \frac{AB}{a-4}-\frac{AB}{a}=\frac{2}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{8AB}{a(a+8)}=1\\ \frac{4AB}{a(a-4)}=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow \frac{2(a-4)}{a+8}=\frac{3}{2}\) (chia 2 pt cho nhau theo vế)
$\Rightarrow a=40$ (km/h)
$AB=\frac{a(a+8)}{8}=\frac{40.48}{8}=240$ (km)
Thời gian dự định: $\frac{AB}{a}=\frac{240}{40}=6$ (giờ)