Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(12-22)+(32-42)+...+(992-1002)+1012
=(-3)+(--7)+...+(-199)+1012
=-(3+7+...+199)+1012
Tính 3+7+...+199
Số số hạng là (199-3):4+1=50
Tổng là (199+3).50:2=5050
=> = -5050+1012
=5151
\(=101^2-\left(100^2-1^2\right)+\left(99^2-2^2\right)-....\)
\(=101^2-99.101+97.101-....\)
\(=101^2-101\left(99-97+95+...\right)\)
\(=101^2-101.50.2=101\left(101-100\right)=101\)
\(A\)= 12 - 22 + 32 - 42 + ... + 992 - 1002 + 1012
\(\Leftrightarrow A\)= \(\left(1.1-2.2\right)\) \(+\)\(\left(3.3-4.4\right)\)\(+\)\(\left(5.5-6.6\right)\)\(+\)\(...\)\(+\)\(\left(99.99-100.100\right)\)\(+\)\(101.101\)
\(\Leftrightarrow A\)= \(\left(-3\right)\)\(+\)\(\left(-7\right)\)\(+\)\(\left(-11\right)\)\(+\)\(...\)\(+\)\(\left(-199\right)\)\(+\)\(10201\).Tìm số hạng của tổng.Mình tìm được 50
\(\Leftrightarrow\)\(\left(-5050\right)\)+\(10201\)=\(5151\)
chúc bạn học tốt
\(a^{100}+b^{100}=a^{101}+b^{101}\Leftrightarrow a^{100}-a^{101}=b^{101}-b^{100}\Rightarrow a^{100}\left(1-a\right)=b^{100}\left(b-1\right)\)
\(\Rightarrow-a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\)
1./ Nếu b = 1 => a = 1 (do a;b>0) nên tổng S = a2010 + b2010 = 2
2./ Nếu b khác 1 \(\Rightarrow\frac{a-1}{b-1}=\frac{b^{100}}{a^{100}}=\left(\frac{b}{a}\right)^{100}\)(1)
Tương tự từ: \(a^{102}+b^{102}=a^{101}+b^{101}\Leftrightarrow a^{102}-a^{101}=b^{101}-b^{102}\Rightarrow a^{101}\left(a-1\right)=b^{101}\left(1-b\right)\)
\(\Rightarrow\frac{a-1}{b-1}=\frac{b^{101}}{a^{101}}=\left(\frac{b}{a}\right)^{101}\)(2)
Từ (1) và (2) \(\left(\frac{b}{a}\right)^{100}=\left(\frac{b}{a}\right)^{101}\Rightarrow\frac{b}{a}=1\Rightarrow a=b\)
Từ: a100 + b100 = a101 + b101 => 2a100 = 2 a101 => a100 = a101 => a = 1; b = 1
Và tổng S = a2010 + b2010 = 2.
Câu 2 sai đề nhé
Phải là:(x-999)/99+(x-896)/101+(x-789/103)=6
Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{99}+2^{100}\right)\)
\(=2+2^2+2^3+...+2^{100}+2^{101}\)
Có \(2A-A=\left(2+2^2+2^3+...+2^{100}+2^{101}\right)-\left(1+2^{ }+2^2+...+2^{99}+2^{100}\right)\)
\(A=2+2^2+2^3+...+2^{100}+2^{101}-1-2-2^2-...-2^{99}-2^{100}\)
\(A=2^{101}-1\) (đpcm)
\(A=138^2+124.138+62^2\)
\(=138^2+2.62.138+62^2\)
\(=\left(138+62\right)^2\)
\(=200^2=40000\)
\(B=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+....+3^2+1^2\right)\)
\(=100^2+98^2+....+2^2-99^2-97^2-....-3^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+191+....+7+3\)
\(=\frac{\left(199+3\right).\left[\left(199-3\right):4+1\right]}{2}=5050\)
Vậy B = 5050
\(101^2=\left(100+1\right)^2=10000+200+1=10201\)
\(1001^2=\left(1000+1\right)^2=1000000+2000+1=1002001\)
\(102^2=\left(100+2\right)^2=10000+400+4=10404\)
\(99^2=\left(100-1\right)^2=10000-200+1=9801\)
\(19^2=\left(10+9\right)^2=100+180+81=361\)
\(999^2=\left(1000-1\right)^2=1000000-2000+1=998001\)