Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)
b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)
c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)
Bài 1:
a) \(\dfrac{1}{8}x^3y^3-27\)
\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)
\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)
b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)
\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)
c) \(0.008x^6-27y^3\)
\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)
\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)
\(a,\left(2x-y\right)^2=4x^2-4xy+y^2\)
\(b,\left(5x-7y^2\right).\left(5x+7y^2\right)=\left(25x^2-49y^4\right)\)
\(c,\left(5x-7y\right)^2.\left(5x+7y\right)^2=\left(25x^2-70xy+49x^2\right).\left(25x^2+70xy+49x^2\right)\)
\(d,\left(\frac{1}{3}x+5y\right).\left(5y-\frac{1}{3}x\right)=25y^2-\frac{1}{9}x^2\)
học tốt nha
a) (2x-y)2 = (2x)2 - 2.2x.y + y2 =4x2-4xy+y2
b)(5x-7y2).(5x+7y2) = (5x)2 - (7y2) 2 =25x2 - 49y4
câu c,d mk ko bít làm
Mạn phép bỏ câu a :))
b) a2(b2 - a2) + b2(b2 + a2)
= a2.b2 + a2.(-a2) + b2.b2 + b2.a2
= a2.b2 - a4 + b4 + a2.b2
= a4 + 2a2b2 + b2 (hđt)
c) x2(x3 + 2y - x2y) - y(x2 - x4 + y)
= x2.x3 + x2.2y + x2.(-x2y) + (-y).x2 + (-y).(-x)4 + (-y).y
= x5 + 2x2y - x4y - x2y + x4y - y2
= x5 + (2xy2 - xy2) + (-x4y + x4y) - y2
= x5 + xy2 - y2
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
Bài 1.
a) 5(4x - y)
= 20x - 5y
b) (x + 2)(x - 2) - (x - 3)(x + 1)
= x2 - 4 - [(x - 1) - 2][(x - 1) + 2)]
= x2 - 4 - [(x - 1)2 - 4]
= x2 - 4 - (x - 1)2 + 4
= x2 - x2 + 2x - 1
= 2x - 1
Bài 2.
a) x - y + 5x - 5y
= (x + 5x) - (y + 5y)
= 6x - 6y
= 6(x - y)
b) 3x2 - 6xy + 3y2 - 12z2
= 3(x2 - 2xy + y2 - 4z2)
= 3[(x2 - 2xy + y2) - 4z2]
= 3[(x - y)2 - 4z2]
= 3(x - y + z)(x - y - z)
Bài 3.
(x3- y3) : (x2 + xy + y2)
= (x - y)(x2 + xy + y2) : (x2 + xy + y2)
= x - y
Thay x = \(\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức đại số ta có:
\(\dfrac{2}{3}\)- \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
Vậy (x3- y3) : (x2 + xy + y2) = \(\dfrac{1}{3}\) tại x = \(\dfrac{2}{3}\) và y = \(\dfrac{1}{3}\)
B1:
a) \(9x^2+90x+225-\left(x-7\right)^2\)
= \(9x^2+90x+225-x^2+14x-49\)
= \(8x^2+104x+176\)
= \(\left(x+2\right)\left(x+11\right)\)
b) \(49\left(y-4\right)^2-9y^2-36y+36\)
= \(49\left(y^2-8y+16\right)-9y^2-36y+36\)
= \(49y^2-392y+784-9y^2-36y+36\)
= \(40y^2-428y+820\)
= \(\left(5y-41\right)\left(8y-20\right)\)
B2:
a) A = \(xy-4y-5y+20=xy-9y+20\)
A = \(y\left(x-9\right)+20\)
Với x = 14, y = \(\dfrac{11}{2}\)
A = \(\dfrac{11}{2}\left(14-9\right)+20=47,5\)
b) B = \(x^2+xy-5x-5y\)
B = \(x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Với x = -5, y = -8
B = \(\left(-5-8\right)\left(-5-5\right)=130\)
B3:
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\left(2x-5\right)\left(-2\right)=0\)
\(x=\dfrac{5}{2}\)
b) \(\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\left(x+3\right)x\left(x-2\right)=0\)
\(\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
c) \(\left(2x^3+2x^2\right)+\left(3x^2+3\right)=0\)
\(2x^3+5x^2+3=0\)
\(\Rightarrow\) Đề sai rồi, nghiệm khủng bố lắm.
Bài 1:
a) \(25\left(x+2y\right)^2-16\left(2x-y\right)^2\)
\(=\left[5\left(x+2y\right)\right]^2-\left[4\left(2x-y\right)\right]^2\)
\(=\left[5\left(x+2y\right)-4\left(2x-y\right)\right]\left[5\left(x+2y\right)+4\left(2x-y\right)\right]\)
\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)
\(=\left(14y-3x\right)\left(13x+6y\right)\)
b) \(0,25\left(x-2y\right)^2-4\left(x+y\right)^2\)
\(=\left[\dfrac{1}{2}\left(x-2y\right)\right]^2-\left[2\left(x+y\right)\right]^2\)
\(=\left[\dfrac{1}{2}\left(x-2y\right)-2\left(x+y\right)\right]\left[\dfrac{1}{2}\left(x-2y\right)+2\left(x+y\right)\right]\)
\(=\left(\dfrac{1}{2}x-y-2x-2y\right)\left(\dfrac{1}{2}x-y+2x+2y\right)\)
\(=\left(-\dfrac{3}{2}x-3y\right)\left(\dfrac{5}{2}x+y\right)\)
\(=-3\left(\dfrac{1}{2}x+y\right)\left(\dfrac{5}{2}x+y\right)\)
c) \(\dfrac{4}{9}\left(x-3y\right)^2-0,04\left(x+y\right)^2\)
\(=\left[\dfrac{2}{3}\left(x-3y\right)\right]^2-\left[\dfrac{1}{5}\left(x+y\right)\right]^2\)
\(=\left[\dfrac{2}{3}\left(x-3y\right)-\dfrac{1}{5}\left(x+y\right)\right]\left[\dfrac{2}{3}\left(x-3y\right)+\dfrac{1}{5}\left(x+y\right)\right]\)
\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x-2y+\dfrac{1}{5}x+\dfrac{1}{5}y\right)\)
\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x-\dfrac{9}{5}y\right)\)
\(=\dfrac{1}{5}\left(\dfrac{7}{3}x-11y\right).\dfrac{1}{5}\left(\dfrac{13}{3}x-9y\right)\)
\(=\dfrac{1}{25}\left(\dfrac{7}{3}x-11y\right)\left(\dfrac{13}{3}x-9y\right)\)
d) \(-25x^2+30x-9\)
\(=-\left(25x^2-30x+9\right)\)
\(=-\left[\left(5x\right)^2-2.5x.3+3^2\right]\)
\(=-\left(5x-3\right)^2\)
Bài 2:
a) \(x^3y^2-x^2y^3-2x+2y\)
\(=x^2y^2\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2y^2-2\right)\)
Thay x = -1 và y = -2 vào ta được
\(=\left[-1-\left(-2\right)\right]\left[\left(-1\right)^2\left(-2\right)^2-2\right]\)
\(=1\left(4-2\right)\)
\(=2\)
b) \(5x^2-3x+3y-5y^2\)
\(=5\left(x^2-y^2\right)-3\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
Thay x = 3 và y = 1 vào ta được
\(=5\left(3-1\right)\left(3+1\right)-3\left(3-1\right)\)
\(=5.2.4-3.2\)
\(=34\)
a) \(A=\left(3x+2\right)^2-9x\left(x+1\right)\)
\(A=9x^2+12x+4-9x^2-9x\)
\(A=3x+4\)
\(B=\left(2x-1\right)^2-2\left(2x-1\right)\left(5x-1\right)+\left(5x-1\right)^2\)
\(B=\left[2x-1-\left(5x-1\right)\right]^2\)
\(B=\left(2x-1-5x+1\right)^2\)
\(B=\left(-3x\right)^2\)
\(B=9x^2\)