K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

\(a^3b-ab^3+a^2+2ab+b^2\)

\(=\left(a^3b-ab^3\right)+\left(a^2+2ab+b^2\right)\)

\(=ab\left(a^2-b^2\right)+\left(a+b\right)^2\)

\(=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\)

\(=\left(a+b\right)\left[ab\left(a-b\right)+\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)

21 tháng 8 2021

Bài 2. Phân tích các đa thức sau thành nhân tử: a3b-ab3+a2+2ab+b2

Giải

 a3b-ab3+a2+2ab+b2 

= ab(a2-b2)+(a+b)2 

= ab(a-b)(a+b)+(a+b)2 

= [a2b-ab2+a+b] . (a+b)

23 tháng 10 2021

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

27 tháng 12 2023

ax - bx - a² + 2ab - b²

= (ax - bx) - (a² - 2ab + b²)

= x(a - b) - (a - b)²

= (a - b)(x - a + b)

30 tháng 10 2021

a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)

b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)

c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)

d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)

24 tháng 7 2017

a2 – b2 – 4a + 4

= a2 – 4a + 4 – b2

= (a – 2)2 – b2

= (a – 2 + b)(a – 2 – b)

= (a + b – 2)(a – b – 2)

5 tháng 8 2021

giups mình với nha

 

21 tháng 3 2017

24 tháng 10 2021

a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)

b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)

\(=\left(bm+an\right)\left(am+bn\right)\)

20 tháng 8 2023

a, 4\(x^3\).y + \(\dfrac{1}{2}\)yz

  =y.(4\(x^3\) + \(\dfrac{1}{2}\)z)

b, (a2 + b2 - 5)2 - 2.(ab + 2)2

 = [a2 + b2 - 5  - \(\sqrt{2}\)(ab + 2) ].[ a2 + b2 - 5 + \(\sqrt{2}\)(ab +2)]

20 tháng 8 2023

a) \(4x^3y+\dfrac{1}{2}yz=y\left(4x^3+\dfrac{1}{2}z\right)\)

b) \(\left(a^2+b^2-5\right)^2-2.\left(ab+2\right)^2\)

\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)

\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)

\(=\left[a^2+b^2+2ab-1\right]\left[a^2+b^2-2ab-9\right]\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left[\left(a+b+1\right)\left(a+b-1\right)\right]\left[\left(a-b+3\right)\left(a-b-3\right)\right]\)

a: \(x^2-9-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(1-x^2\right)\)

\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)

b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

d: \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

e: \(3x^2-4x-4\)

\(=3x^2-6x+2x-4\)

\(=3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x+2\right)\)

g: \(x^4+64y^4\)

\(=x^4+16x^2y^2+64y^4-16x^2y^2\)

\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

 

h: \(a^2+b^2+2a-2b-2ab\)

\(=a^2-2ab+b^2+2a-2b\)

\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)

\(=\left(x+1-y+3\right)^2\)

\(=\left(x-y+4\right)^2\)

k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

NM
10 tháng 10 2021

ta có :

undefined