K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2021

a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)

Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 } 

b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = { -2 ; 3 } 

c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)

Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 } 

d, \(\left|3x+1\right|=x-2\)

TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)

TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)

Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 } 

các ý còn lại tương tự 

a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={3;4;1;2}

a: =>|x-3/2|=2

\(\Leftrightarrow x-\dfrac{3}{2}\in\left\{2;-2\right\}\)

hay \(x\in\left\{\dfrac{7}{2};-\dfrac{1}{2}\right\}\)

f: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-2\\2x+3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3 tháng 2 2022

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

14 tháng 1 2021

a) (x - 7)(2x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy: S = {7; -4}

b) Tương tự câu a

c)  (x - 1)(2x + 7)(x2 + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)

Mà: x+ 2 > 0 với mọi x

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)

d) (2x - 1)(x + 8)(x - 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)

 

14 tháng 1 2021

a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy \(S=\left\{7;-4\right\}\)

b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)

c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)

23 tháng 10 2021

a) \(6x^2-15x\)

b) \(x^2+5x+4\)

c) \(49-x^2\)

d) \(x^2+4x+4\)

e) \(9-12x+4x^2\)

f) \(x^3-8\)

23 tháng 10 2021

\(a,=6x^2-15x\\ b,=x^2+5x+4\\ c,=49-x^2\\ d,=x^2+4x+4\\ e,=9-12x+4x^2\\ f,=x^3-8\)

a: =>9x^2+6x+1-6(2x^2-13x+21)=0

=>9x^2+6x+1-12x^2+78x-126=0

=>-3x^2+84x-125=0

=>\(x\in\left\{26.42;1.58\right\}\)

b: =>(3x+1)[(2x-5)^2-(x-3)^2]=0

=>(3x+1)(2x-5-x+3)(2x-5+x-3)=0

=>(3x+1)(x-2)(3x-8)=0

=>\(x\in\left\{-\dfrac{1}{3};2;\dfrac{8}{3}\right\}\)

c; =>(x+5)(0,75x-3+1,25x)=0

=>(x+5)(2x-3)=0

=>x=3/2 hoặc x=-5