Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bán kính đường tròn ngoại tiếp của ΔABC là:
\(R=\dfrac{a\sqrt{3}}{3}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Bán kính đường tròn ngoại tiếp của ΔABC là:
R=a√3 / 3=4√3 / 3(cm)
Gọi O là giao 3 đường trung trực của ∆ABC. Khi đó O là tâm đường tròn ngoại tiếp ∆ABC. Gọi H là giao điểm của AO và BC. Ta có : AH = 3 cm
OA = 2 3 AH = 2 3 3 cm
Bạn tự vẽ hình nhé !
Gọi\(\Delta ABC\)đều có O vừa là tâm đường tròn ngoại tiếp vừa là trọng tâm ; AH vừa là đường cao vừa là trung tuyến
=> HB = BC/2 = 3/2 = 1,5 (cm) =>\(\Delta AHB\)vuông tại H có :\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-\left(1,5\right)^2}=\frac{3\sqrt{3}}{2}\left(cm\right)\)
=> Bán kính đường tròn ngoại tiếp là : AO =\(\frac{2}{3}.AH=\frac{2}{3}.\frac{3\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)(vì O là trọng tâm)
a . Gọi AH ∩ BC=D,BH ∩ AC=E,CH ∩ AB=F
\(\Rightarrow AD\perp BC,BE\perp AC,CF\perp AB\)
\(\Rightarrow\widehat{ADC}=\widehat{AFC}=90^0\) => ◊AFDC nội tiếp
\(\Rightarrow\widehat{DCF}=\widehat{DAF}\)
VÌ H đối xứng H' qua BC
\(\Rightarrow HH'\perp BC\Rightarrow A,H,,D,H'\)thẳng hàng
\(\Rightarrow\widehat{BAH'}=\widehat{DAF}=\widehat{FDC}=\widehat{HCB}\)
Lại có: H đối xứng với H' qua BC
\(\Rightarrow\widehat{BCH'}=\widehat{HCB}\)
\(\Rightarrow\widehat{BCH'}=\widehat{BAH'}\Rightarrow\)
\(\Rightarrow BC\perp AA'\Rightarrow A,H,D,H',A'\) thẳng hàng
Vì \(H,H'\) đối xứng qua BC , A,A' đối xứng qua BC
\(\Rightarrow\widehat{BHC}=\widehat{BH'C},\widehat{BAC}=\widehat{BA'C}\)
Lại có ◊ ABH'C nội tiếp
\(\Rightarrow\widehat{BAC}+\widehat{BH'C}=180^0\)
\(\Rightarrow\widehat{BA'C}+\widehat{BHC}=180^0\)
=> ◊ BHCA' nội tiếp
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp \(\Delta A'BC\)
Ta có : A , A' đối cứng qua BC
\(\Rightarrow A'B=AB,CA=CA'\Rightarrow\Delta ABC=\Delta A'BC\left(c.c.c\right)\)
=> Bán kính đường tròn ngoại tiếp \(\Delta A'BC\) bằng bán kính đường tròn ngoại tiếp ΔABC
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp ΔABC
khi ABC đều thì tâm đường tròn ngoại tiếp trùng với trọng tâm tam giác
Gọi các điểm như hình vẽ
mà ta có : \(CH=\sqrt{CA^2-AH^2}=\sqrt{a^2-\left(\frac{a}{2}\right)^2}=\frac{a\sqrt{3}}{2}\)
mà ta có \(CJ=\frac{2}{3}CH=\frac{a\sqrt{3}}{3}\) chính là bán kính đường tròn ngoại tiếp ABC