Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a) Xét tam giác ABM và tam giác CKM , có:
AM = MC ( M là trung điểm )
MB = MK ( gt)
Góc BMA = KMC ( 2 góc đối đỉnh)
=> tam giác ABM = CKM
=> góc A = góc C ( =90 độ) ( 2 góc tg ứng)
=> KC vuông góc AC
giải phần a đã =)))
Bài 2
vìtam giác MCK = MAB(c.g.c)\(\Rightarrow\widehat{MCK}=\widehat{MAB}\)
Vậy nên\(\widehat{MCK}=90^o\)
Vì tam giác AMK=CMB(c.g.c) \(\Rightarrow\widehat{MKA}=\widehat{MBC}\)
mà hai góc này ở vị trí so le trong nên\(AK\) //BC
a) Vì ΔMCK=ΔMAB(c−g−c)ΔMCK=ΔMAB(c−g−c) nên :
⇒ˆMCK=ˆMAB⇒MCK^=MAB^
Vậy ˆMCK=90oMCK^=90o
Hay : CK⊥ACCK⊥AC
b) Vì ΔAMK=ΔCMB(c−g−c)ΔAMK=ΔCMB(c−g−c) nên :
⇒ˆMKA=ˆMBC⇒MKA^=MBC^
Mà 2 góc này ở vị trí so le trong nên :
AK//BC
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a)Xét tam giác BAM và tam giác KCM có :
M1 = M3 ( Đối đỉnh )
AM = MC ( gt )
BM = MK ( gt )
=> Tam giác BAM = tam giác KCM
=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )
b) Xét tam giác AMK và tam giác CMB có :
KM = MB ( gt )
AM = MC ( gt )
M2 = M4 ( Đối đỉnh )
=> Tam giác AMK = tam giác CMB
=> Góc MKA = góc MBC ( cặp góc tương ứng )
=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )
ta ko vẽ hình nhoa
a,
xét \(\Delta ABM\)VÀ \(\Delta CKM\)CÓ:
\(AM=CM\)(vì M là trung điểm của AC)
\(BM=KM\)(gt)
\(\widehat{AMB}=\widehat{KMC}\)(đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{KCM}=\widehat{BAM}=90^o\)(cặp góc tương ứng)
hya \(KC\perp AC\)
b,
Vì ΔAMK=ΔCMB(c−g−c) :
\(\Rightarrow\widehat{MKA}=\widehat{MBC}\)
Mà 2 góc này ở vị trí so le trong nên :
AK//BC(dpcm)
học tốt ạ
Xét tam giác MAB và tam giác MKC ta có:
MA=MC ( M là TĐ của AC)
\(\widehat{BMA}\)= \(\widehat{KMC}\)( Đối đỉnh)
MB= MK (gt)
=> tam giác MAB = tam giác MCK (c.g.c)
=> \(\widehat{MBA}\)= \(\widehat{MKC}\)( góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong nên AB // CK
Mà AB vuông góc với AC
=> KC vuông góc với AC
b) Xét tam giác AMC và tam giác AMK ta có:
MA=MC ( M là TĐ của AC )
\(\widehat{AMK}\)= \(\widehat{BMC}\)( Đối Đỉnh )
MB = MK ( gt )
=> tam giác BMC = tam giác KMA (c.g.c)
=> \(\widehat{MBC}\)= \(\widehat{MKA}\)( góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong
=> AK // BC