K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a. \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{2}\\x_1=\dfrac{3\left(m+1\right)}{2}\end{matrix}\right.\)

Lại có \(x_1x_2=2m+10\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3\left(m+1\right)}{2}\right)=2m+10\)

\(\Leftrightarrow3m^2+6m+3=8m+40\)

\(\Leftrightarrow3m^2-2m-37=0\Rightarrow m=\dfrac{1\pm4\sqrt{7}}{3}\)

b.

\(P=-\left(x_1+x_2\right)^2-8x_1x_2\)

\(=-4\left(m+1\right)^2-8\left(2m+10\right)\)

\(=-4m^2-24m-84=-4\left(m+3\right)^2-48\le-48\)

\(P_{max}=-48\) khi \(m=-3\)

a) Ta có: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+10\right)\)

\(=\left(2m+2\right)^2-4\left(2m+10\right)\)

\(=4m^2+8m+4-8m-40\)

\(=4m^2-36\)

Để phương trình có nghiệm thì \(4m^2-36\ge0\)

\(\Leftrightarrow4m^2\ge36\)

\(\Leftrightarrow m^2\ge9\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi \(m\ge3\) hoặc \(m\le-3\) thì Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=2m+10\\x_1+x_2=2\left(m+1\right)=2m+2\end{matrix}\right.\)

mà \(x_1-3x_2=0\) nên ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2m+2\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\cdot x_2\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3m+3}{2}\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Thay \(x_1=\dfrac{3m+3}{2};x_2=\dfrac{m+1}{2}\) vào \(x_1\cdot x_2=2m+10\), ta được:

\(\dfrac{3m+3}{2}\cdot\dfrac{m+1}{2}=2m+10\)

\(\Leftrightarrow\dfrac{3\left(m+1\right)^2}{4}=2m+10\)

\(\Leftrightarrow3\left(m^2+2m+1\right)=8m+40\)

\(\Leftrightarrow3m^2+6m+3-8m-40=0\)

\(\Leftrightarrow3m^2-2m-37=0\)

\(\Delta=\left(-2\right)^2-4\cdot3\cdot\left(-37\right)=4+444=448>0\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2+8\sqrt{7}}{6}=\dfrac{4\sqrt{7}+1}{3}\left(nhận\right)\\m_2=\dfrac{2-8\sqrt{7}}{6}=\dfrac{1-4\sqrt{7}}{3}\left(nhận\right)\end{matrix}\right.\)

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

NV
21 tháng 3 2022

\(\Delta'=\left(m-1\right)^2+2m=m^2+1>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Cộng vế với vế: \(x_1x_2+x_1+x_2=-2\) (1)

\(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\) (2)

Cộng vế với vế (1) và (2):

\(\Rightarrow x_1^2+2x_1=3\)

\(\Leftrightarrow x_1^2+2x_1-3=0\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-\dfrac{3}{2}\\x_1=-3\Rightarrow x_2=-\dfrac{1}{2}\end{matrix}\right.\) (thế \(x_1\) vào (1) để tính ra \(x_2\))

Thế vào \(x_1x_2=-2m\Rightarrow m=-\dfrac{x_1x_2}{2}\Rightarrow m=\pm\dfrac{3}{4}\)

Cách ngắn ngọn nhất:

x2−2(m+1)x+4m=0(1)�2−2(�+1)�+4�=0(1)

⇔x2−2x−2mx+4m=0⇔�2−2�−2��+4�=0

⇔x(x−2)−2m(x−2)=0⇔�(�−2)−2�(�−2)=0

⇔(x−2)(x−2m)=0⇔(�−2)(�−2�)=0

⇔[x=2x=2m⇔[�=2�=2�

Phương trình (1) có 2 nghiệm là x=2;x=2m�=2;�=2�. Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:

TH1x1=2;x2=2m�1=2;�2=2�.

Có 2x1−x2=−2⇒2.2−2m=−2⇔m=32�1−�2=−2⇒2.2−2�=−2⇔�=3

TH2x1=2m;x2=2�1=2�;�2=2

Có 2x1−x2=−2⇒2.(2m)−2=−2⇔m=02�1−�2=−2⇒2.(2�)−2=−2⇔�=0

Vậy m=0 hay m=3

12 tháng 4 2023

Không rõ bạn ạ, mình chẳng thấy gì cả.

24 tháng 5 2022

hình như đề thiếu hả bạn

6 tháng 6 2022

thiếu đâu đủ mà

25 tháng 2 2022

a, bạn tự làm 

b, Thay x = 3 vào pt trên ta được 

\(9-3m-3=0\Leftrightarrow6-3m=0\Leftrightarrow m=2\)

Thay m = 2 vào ta được \(x^2-2x-3=0\)

Ta có a - b + c = 1 + 2 - 3 = 0 

vậy pt có 2 nghiệm x = -1 ; x = 3 

c, \(\Delta=m^2-4\left(-3\right)=m^2+12>0\)

vậy pt luôn có 2 nghiệm pb 

\(x_1x_2+5\left(x_1+x_2\right)-1997=0\)

\(\Rightarrow-3+5m-1997=0\Leftrightarrow5m-2000=0\Leftrightarrow m=400\)

 

a: Khi m=-1 thì pt sẽ là \(x^2-\left(-1+2\right)x-\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-2=0\)

=>x=2 hoặc x=-1

b: \(\Delta=\left(m+2\right)^2-4\left(-m-3\right)\)

\(=m^2+4m+4+4m+12\)

\(=m^2+8m+16=\left(m+4\right)^2\)

=>Phương trình luôn có hai nghiệm

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2>1\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(-m-3\right)>1\)

\(\Leftrightarrow m^2+4m+4+2m+6-1>0\)

\(\Leftrightarrow\left(m+3\right)^2>0\)

=>m<>-3

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

17 tháng 6 2022

cái này bạn lm cái điều kiện vs giải pt đối chiếu điều kiện Cho mik nhé

 

17 tháng 6 2022

cái này mik phân tích đề Cho bạn hiểu