Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G
Suy ra: G là trọng tâm của ∆ ABC .
⇒ GB = 2GM (tính chất đường trung tuyến)
GC = 2GN (tính chất đường trung tuyến)
Điểm D đối xứng với điểm G qua điểm M
⇒ MG = MD hay GD = 2GM
Suy ra: GB = GD (l)
Điểm E đối xứng với điểm G qua điểm N
⇒ NG = NE hay GE = 2GN
Suy ra: GC = GE (2)
Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét ∆ BCM và ∆ CBN, có: BC cạnh chung
∠ (BCM) = ∠ (CBN) (tính chất tam giác cân)
CM = BN (vì AB = AC)
Suy ra: ∆ BCM = ∆ CBN (c.g.c)
⇒ ∠ (MBC) = ∠ (NCB) ⇒ ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE
Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.
MK dang thac mac tai sao mk lai co the lam ging het bn 100% ?
Tự vẽ hình:
cminh:Vì D đối xứng với G qua M
=>GM=MD Hay GD=2GM
Vì BM;CN cắt nhau tại G trong tam giác ABC
=>G là trọng tâm trong Tam giác ABC =>BG=2GM
Suy ra : GD=BG(vì =2GM)=> G là trung điểm của BD (1)
Ta lại có : E đối xứng với G qua N=> EN=GN Hay EG=2NG
Và CG=2GN( G là trọng tâm)
Suy ra: CG=EG ( vì =2NG) (2) (*)
Từ (1) (2)=> Tứ giác BEDC là hình bình hành
Xét \(\Delta\)CBM Và \(\Delta\)BCN Có:
BC: Cạnh chung
Góc B=C(g/t)
BN=CM(AB=AC)
=> hai tam giác bằng nhau(c-g-c)
=>MBC=NCB(2 góc tương ứng) hay tam giác GBC cân=> BG=GC (**)
Từ (*) (**)=> Hình bình hành BEDC là hình chữ nhật
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Xét tứ giác BNMC có NM//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BNMC là hình thang cân
a) Xét tứ giác EDFH có K là trung điểm của EF
K là trung điểm của DH (vì H đối xứng với D qua K)
\(\widehat{FDE}=90^0\)
=> tứ giác EDFH là hình chữ nhật
Vật tứ giác EDFH là hình chữ nhật
b) Có M đối xứng với K qua DF và cắt MK cắt DF tại N
=> N là trung điểm của DF ; N là trung điểm của M
Xét \(\Delta DEF\) vuông tại D có DK là đường trung tuyến
=> DK=KF=EK
Xét tứ giác DMFK có N là trung điểm của DF
N là trung điểm của MK
KD=KF
=> tứ giác DMFK là hình thoi
Vậy tứ giác DMFK là hình thoi
c) Có tứ giác EDFH là hình chữ nhật
=> DK=KH;DK//KH
Mà MF=DK;DK//MF (do tứ giác DMFK là hình thoi)
=> MF=KH;MF//KH
Xét tứ giác MFHK có MF=KH
MF//KH
=> tứ giác MFHK là hình bình hành
=> G là trung điểm của MH (vì MH cắt EF tại G)
Xét \(\Delta MKH\) có G là trung điểm của MH
N là trung điểm của MK
=> NG là đường trung bình của \(\Delta MKH\)
=> NG = \(\dfrac{1}{2}\) KH
Mà KH=\(\dfrac{1}{2}\) DK,DK=EF (vì tứ giác EDFH là hình chữ nhật)
=> NG=\(\dfrac{1}{4}\) EF
Vậy NG=\(\dfrac{1}{4}\) EF hay EF=4NG
Câu cuối mình làm hơi tắt một chút bạn nhé
Chúc bạn học tốt :))
Xét tứ giác BCDE có
G là trung điểm của BD
G là trung điểm của CE
Do đó: BCDE là hình bình hành
mà \(\widehat{EBC}=90^0\)
nên BCDE là hình chữ nhật