K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 5 2019

Bài 1:

\(A=3x^2+2x-3=3(x^2+\frac{2}{3}x+\frac{1}{3^2})-\frac{10}{3}\)

\(=3(x+\frac{1}{3})^2-\frac{10}{3}\geq 3.0-\frac{10}{3}=-\frac{10}{3}\)

Vậy GTNN của $A$ là \(\frac{-10}{3}\).

Dấu "=" xảy ra khi \((x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}\)

-------------------

\(B=3x^2-6xy+5y^2-y+3x+2016\)

\(=3(x^2-2xy+y^2)+2y^2-y+3x+2016\)

\(=3(x-y)^2+3(x-y)+2y^2+2y+2016\)

\(=3(x-y)^2+3(x-y)+\frac{3}{4}+2(y^2+y+\frac{1}{4})+\frac{8059}{4}\)

\(=3[(x-y)^2+(x-y)+\frac{1}{4}]+2(y+\frac{1}{2})^2+\frac{8059}{4}\)

\(=3(x-y+\frac{1}{2})^2+2(y+\frac{1}{2})^2+\frac{8059}{4}\)

\(\geq 3.0+2.0+\frac{8059}{4}=\frac{8059}{4}\)

Vậy GTNN của $B$ là \(\frac{8059}{4}\).

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-y+\frac{1}{2}=0\\ y+\frac{1}{2}=0\end{matrix}\right.\Leftrightarrow x=-1; y=-\frac{1}{2}\)

18 tháng 7 2017

Bài 1

a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

18 tháng 9 2017

Ta có : A = x2 - 6x + 15 

= x2 - 6x + 9 + 6

= (x - 3)2 + 6 \(\ge6\forall x\in R\)

Vậy Amin = 6 khi x = 3.

2 tháng 8 2018

\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)

\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)

Vậy GTLN của B là 23 khi x = -4

\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Vậy GTNN của C là 1 khi x = 10

\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)

Vậy GTNN của D là 8 khi x = 1

2 tháng 8 2018

\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy Max A = 9/4 <=> x = 3/2

\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)

Vậy MinB = 23 <=> x = -4

\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)

Vậy MinC = 1 <=> x = 10

\(d,D=3x^2-6x+11\)

\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)

Vậy MinD = 8<=> x=1