K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

3n + 5 ⋮ 2n + 1

(3n + 5).2 ⋮ 2n + 1

6n + 10 ⋮ 2n + 1

 3.(2n + 1) + 7 ⋮ 2n + 1

   2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

Lập bảng ta có:

2n+1 -7 -1 1 7
n -4 -1 0

3

 

Theo bảng trên ta có 

\(\in\) {-4; -1; 0; 3}

 

15 tháng 1 2018

Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé

a.(2n+5) chia hết cho (n-1) 

Ta có :2n+5=2n-1+6 

Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1

                                   =>n-1 thuộc Ư(6)

Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}

Ta có bảng giá trị sau :

n-1-11-22-33-66
n02-13-24-57

Vậy n thuộc {0;2;-1;3;-2;4;-5;7}

HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM

3 tháng 7 2019

cái baì này mà cx ko biết . Đúng là đồ ngu

5 tháng 1 2016

a)n+2={1;2;4;8;16}

n={-1;0;2;6;14}

b)(n-4)chia hết cho(n-1)

(n-1-3) chia hết cho(n-1)

Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)

Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}

suy ra n={1;4;0;-2}

c) 2n+8 thuộc B(n+1)

suy ra n+1 chia het cho 2n+8

suy ra 2n+2 chia het cho 2n+8

suy ra (2n+8)-6 chia het cho2n+8

Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8

suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}

mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)

suy ra 2n+8 thuộc{2;6;-2;-6}

suy ra 2n thuộc{-6;-2;-10;-14}

suy ra n thuộc {-3;-1;-5;-7}

d) 3n-1 chia het cho n-2

suy ra [(3n-6)+5chia hết cho n-2

Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2

suy ra n-2 thuộc{1;5;-1;-5}

suy ra n thuộc{3;7;1;-3}

e)3n+2 chia hết cho 2n+1

suy ra [(6n+3)+1] chia hết cho 2n+1

Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1

suy ra 2n+1 thuộc{1;-1}

suy ra 2n thuộc {0;-2}

suy ra n thuộc {0;-1}

 

Bài 1: a) \(-2.\left(2x-8\right)+3.\left(4-2x\right)=\left(-72\right)-5.\left(3x-7\right)\)

\(-4x+16+12-6x=-72-15x+35\)

\(-4x-6x+15x=-72+35-16-12\)

\(5x=-65\)

\(x=-\frac{65}{5}\)

\(x=-13\)

b) \(3.\left|2x^2-7\right|=33\)

\(\left|2x^2-7\right|=\frac{33}{3}=11\)

\(\Rightarrow\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Rightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\\end{cases}}}\)

Bài 2:

Ta có: \(2n+1⋮n-3\)

\(2n-6+7⋮n-3\)

\(2\left(n-3\right)+7⋮n-3\)

Vì \(2\left(n-3\right)⋮n-3\)

Để \(2\left(n-3\right)+7⋮n-3\)

Thì \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n-3-117-7
n2410-4

Vậy.....

hok tốt!!

9 tháng 1 2018

1) n + 3 chia hết cho n-2

(n-2) + 5 chia hết cho n-2

Mà n-2 chia hết cho n-2

=> 5 chia hết cho n-2

=> n-2 thuộc Ư(5)

Ư(5)={1,5}

n - 2 = 1

n = 3

n - 2 -= 5 

n = 7 

n thuộc {3,7}

9 tháng 1 2018

a/ \(n+3⋮n-2\)

Mà \(n-2⋮n-2\)

\(\Leftrightarrow5⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(5\right)\)

Suy ra :

+) n - 2 = 1 => n = 3

+) n - 2 = 5 => n = 7

+) n - 2 = -1 => n = 1

+) n - 2 = -5 => n = -3

Vậy ............

b/ \(2n+1⋮n-3\)

Mà \(n-3⋮n-3\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮n-3\\2n-6⋮n-3\end{cases}}\)

\(\Leftrightarrow7⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(7\right)\)

Suy ra :

+) n - 3  = 1 => n = 4

+) n - 3 = 7 => n = 10

+) n - 3 = -1 => n = 2

+) n - 3 = -7 => n = -4

Vậy ..

2n+5chia hết cho 2n+1

=>4n+10chia hết cho 4n+2

=>2n+5chia hết cho 2n+1

29 tháng 11 2019

Ta có: 2n + 5 = (2n - 1) + 6

Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1

=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}

=> 2n \(\in\){2; 3; 4; 7}

Do n \(\in\)N=> n \(\in\){1; 2}

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)