K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Cầu 1:

\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)

Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)

Cứ cho a+b=49 thì

Thế a+b vào đẳng thức trên đc:

\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)

Từ đó: ta có

\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)

Vậy phân số cần tìm là ........... (có 2 p/s nha)

Câu 2 Dễ mà ~~~~~~~

Làm biếng :3

6 tháng 4 2017

Câu 3 : 

b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1 

=> 2n + 8 chia hết cho 2n - 1  

mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1 

=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }

=> 2n - 1 \(\in\) { 1 ,3 , 9 }

=> 2n\(\in\){ 2 , 4 ,10}

=> n\(\in\){ 1, 2 ,5 }

=> P\(\in\){ 5 , 2 , 1 }

Vì P là nguyên tố nên P\(\in\){ 5,2}

vậy n\(\in\){ 1 , 2 }

Câu 4 : 

29 tháng 2 2020

1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó 

Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố

\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)

\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)

\(\Rightarrow n=0\)( chọn )

29 tháng 2 2020

2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :

24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .

Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .

Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9  

Suy ra b = 3 .

Thử lại : 795 + 834 = 1629 chia hết cho 9 .

1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7

=> 4 (a - 3) chia hết cho 7  => 4a - 12 chia hết cho 7

=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)

a chia cho 13 dư 11 => a - 11 chia hết cho 13

=> 4 (a - 11) chia hết cho 13  => 4a - 44 chia hết cho 13

=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)

a chia cho 17 dư 14 => a - 14 chia hết cho 17

=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17

=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)

Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)

Mà a nhỏ nhất => 4a - 5 nhỏ nhất

=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547

=> 4a = 1552  => a= 388

2. Gọi ƯCLN(a,b) = d

=> a = d . m          (ƯCLN(m,n) = 1)

     b = d . n  

Do a < b => m<n

Vì BCNN(a,b) . ƯCLN(a,b) = a . b

\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)

Vì BCNN(a,b) + ƯCLN(a,b) = 19

=> m . n . d  + d = 19

=> d . (m . n + 1) = 19

=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)

Ta có bảng sau:

d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9

Vậy (a,b) = (2;9) ; (1 ; 18)

3. 

10 tháng 5 2020

có đứa nào giúp tao giải bài của thằng thành tao cho

19 tháng 2 2019

a) Không thể khẳng định \(\frac{a}{21}\)là phân số tối giản vì nếu \(a=3;a=7\)là số nguyên tố thì phân số chưa tối giản
\(\cdot a=3\Rightarrow\frac{3}{21}=\frac{1}{7}\)\(\cdot a=7\Rightarrow\frac{7}{21}=\frac{1}{3}\)
b) Để \(\frac{a}{21}\)là phân số tối giản thì \(a\ne3;7;21\). Mà \(a< 21\)nên \(S_a=\left(0;1;2;4;5;6;8;9;10;11;12;13;14;15;16;17;18;19;20\right)\)