Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)
b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Phân tích đa thức thành nhân tử
a) 2( x + 1 ) - 3y( x + 1 ) = ( x + 1 )( 2 - 3y )
b) x2 - 5x + 4 = x2 - x - 4x + 4 = x( x - 1 ) - 4( x - 1 ) = ( x - 1 )( x - 4 )
Tìm x
a) x( x - 3 ) + 7x - 21 = 0
<=> x( x - 3 ) + 7( x - 3 ) = 0
<=> ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
b) ( x - 2 )2 + x( 3 - x ) = 6
<=> x2 - 4x + 4 + 3x - x2 = 6
<=> -x + 4 = 6
<=> -x = 2
<=> x = -2
\(A=\frac{x-2}{x}\)và \(B=\frac{x}{x-2}-\frac{2x}{x^2-4}\)( x ≠ 0 ; x ≠ ±3 )
a) Tại x = 23 ( tmđk ) => \(A=\frac{23-2}{23}=\frac{21}{23}\)
b) P = A.B
\(=\frac{x-2}{x}\times\left(\frac{x}{x-2}-\frac{2x}{x^2-4}\right)\)
\(=\frac{x-2}{x}\times\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x-2}{x}\times\frac{x^2+2x-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{1}{x}\times\frac{x^2}{x+2}=\frac{x}{x+2}\)
Để P = 4 => \(\frac{x}{x+2}=4\)
=> 4( x + 2 ) = x
=> 4x + 8 - x = 0
=> 3x + 8 = 0
=> x = -8/3 ( tmđk )