Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\(=\frac{1}{4}x^2+2.\frac{1}{2}x.1+1=\frac{1}{4}x^2+x+1\)
b\(=4x^2-2.2x.\frac{1}{3}+\frac{1}{9}=4x^2-\frac{4}{3}x+\frac{1}{9}\)
Bạn học tốt nha >>>>>>
nha
a/\(\left(\frac{1}{2}x+1\right)^2=\frac{1}{4}x^2+x+1^2\)
b/\(\left(2x-\frac{1}{3}\right)^3=8x^3-2x+\frac{2}{3}x-\frac{1}{27}\)
k nha
a) Ta có: \(\left(x-3\right)^3\)
\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(=x^3-9x^2+27x^2-27\)
b) Ta có: \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)
\(=8x^3-36x^2+54x-27\)
c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)
\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)
d) Ta có: \(\left(x^2-2\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)
\(=x^6-6x^4+12x^2-8\)
e) Ta có: \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-24x^2y+36xy^2-27y^3\)
f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)
\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)
\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)
\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)
\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)
\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)
\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)
\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)
\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)
\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)
\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)
\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)
\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)
\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)
\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)
\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)
\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)
\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)
\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)
a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)
b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)
c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)
d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)
e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\frac{4}{9}x^2-\frac{9}{4}y^2\)
a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)
b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)
c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)
d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)
e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\left(\frac{2}{3}x\right)^2-\left(\frac{3}{2}y\right)^2=\frac{4}{9}x^2-\frac{9}{4}y^2\)
1) \(\left(\frac{1}{4}+k\right)^2=\frac{1}{16}+\frac{1}{2}k+k^2\)
2) \(\left(2x^2y+\frac{1}{2}xy^2\right)^2=4x^4y^2+2x^3y^3+\frac{1}{4}x^2y^4\) (hẳn đề là như thế này)
3) \(\left(x+\frac{1}{2}y\right)^2=x^2+xy+\frac{1}{4}y^2\)