Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m-6=0
Δ=(2m+1)^2-4(m^2+m-6)
=4m^2+4m+1-4m^2-4m+24
=25>0
=>Phương trình luôn có hai nghiệm phân biệt
\(\left|x_1^2-x_2^2\right|=50\)
\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)
\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)
=>|2m+1|=10
=>m=9/2 hoặc m=-11/2
Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=64\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)
\(\Leftrightarrow4\left(m-2\right)^2+20=64\)
\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(a=1;b=-3;c=-m^2+1\)
\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9+4m^2-4=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
Em kiểm tra lại đề, đề bài sai
Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung
a: Khi m=-5 thì y=2(-5+1)x-(-5)+4
=>y=-8x+9
PTHĐGĐ là:
x^2+8x-9=0
=>(x+9)(x-1)=0
=>x=1 hoặc x=-9
=>y=1 hoặc y=81
b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)
\(=\sqrt{4m^2+8m+4-4m+16}\)
\(=\sqrt{4m^2+4m+20}\)
\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)
Dấu = xảy ra khi m=-1/2
a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)
Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).
b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, x2 và vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)
Từ đây ta có:
\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)
\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)
\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:
\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)
Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)
Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)
\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)
\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)
Mình mới sửa một chút nhé.
\(\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\) \(\Leftrightarrow\left|A+\dfrac{1}{2}\right|\le\dfrac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\\A+\dfrac{1}{2}\ge\dfrac{-\sqrt{3}}{2}\end{matrix}\right.\Leftrightarrow\dfrac{-\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
Nếu gặp dạng \(a^2\le b\) (b là số dương) thì a sẽ bé hơn b và lớn hơn số đối của b, nói chung a nằm trong khoảng từ -b đến b.
Ví dụ: \(a^2\le4\Leftrightarrow\left|a\right|\le2\Leftrightarrow-2\le a\le2\)
a: Thay x=0 và y=5 vào y=mx+5, ta đc:
5=m*0+5(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-5=0
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
x1<x2 mà |x1|>|x2| nên x1<x2<0
Để (P) cắt (d) tại hai điểm phân biệt âm thì
m/1<0 và -5/1<0
=>m<0
Pt hoành độ giao điểm: \(x^2-mx-5=0\) (1)
Để (P) cắt d tại 2 điểm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt
Do \(a.c=1.\left(-5\right)=-5< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu
Theo Viet: \(x_1+x_2=m\)
\(\left\{{}\begin{matrix}x_1>x_2\\\left|x_1\right|< \left|x_2\right|\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\x_1^2< x_2^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\end{matrix}\right.\)
\(\Rightarrow x_1+x_2< 0\Rightarrow m< 0\)
Vậy \(m< 0\) thì pt có 2 nghiệm thỏa mãn