K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

a,  12= 2^2.3

      48=2^4.3

      120=2^3.3.5

=> ƯCLN(12,48,120)=2^2.3=12

Vậy ƯCLN(12,48,120)=12

b, 12=2^2.3

     48=2^4.3

      120=2^3.3.5

=> BCNN(12,48,120)=2^4.3=48

Vây BCNN(12,48,120)=48

16 tháng 11 2017

Bạn giúp mk phần c và bài 2 vs

22 tháng 5 2016

c đề thiếu 

22 tháng 5 2016

thiếu gì vậy bạn

5 tháng 11 2015

a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1

Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6

Do m và n nguyên tố cùng nhau nên ta được như sau:

- Nếu m=1 thì a=42 và n=5 thì b=210

- Nếu m=5 thì a=210 và n=1 thì b=42

b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}

c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        3(2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        (6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2

Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1

Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)

 

 

12 tháng 11 2017

m n ở đâu

11 tháng 11 2016

a,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d => n+1 chia hết cho d

b chia hết cho d=> n + 6 chia hết cho d

=> n + 6 - (n+1) chia hết cho d

=>5 chia hết cho d

Mà d lớn nhất

=> d = 5

Vậy UCLN của a, b = 5

b,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>2n+1 chia hết cho d

b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d

=>2n + 8 - (2n+1)chia hết cho d

=7 chia hết cho d

Mà d lớn nhất

=> d = 7

Vậy UCLN của a, b = 7

c,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d

b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d

=>20 + 15 - (20n+4) chia hết cho d

=>11 chia hết cho d

Mà d lớn nhất

=> d = 11

Vậy UCLN của a, b = 11

14 tháng 2 2017

bạn có biết ko?

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu