K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé.  Đề 1 :  Đề trường Đăng Đạo năm 2013-2014Bài 1 : ( 1,5 điểm )a) Thực hiện phép tính :       \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)b) Tính tỉ...
Đọc tiếp

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé. 

 Đề 1 :  Đề trường Đăng Đạo năm 2013-2014

Bài 1 : ( 1,5 điểm )

a) Thực hiện phép tính : 

      \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

b) Tính tỉ số \(\frac{A}{B}\) biết \(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49};B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

Bài 2: ( 2 điểm ) Tìm x biết 

a) \(\left(\frac{2}{3}\right)^{2x+3}=\frac{2187}{128}\)

b) \(\left(2x-5\right)^{2007}=\left(2x-5\right)^{2005}\)

c) \(|x-7|+2x+5=6\)

Bài 3 ( 2 điểm )

a) Cho a+b+c =1010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{201}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

b) Cho x = by+cz ; y= ax+cz ; z=ax+by

Chứng minh rằng \(H=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Bài 4 ( 1,5 điểm )

a) Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.

b) Tìm giá trị nhỏ nhất của \(A=|x-2006|=|2007-x|\) Khi x thay đổi

Bài 5 :

Cho tam giác cân ABC ( AB=AC ). Trên tia đối của tia  BC và CB lấy theo thứ tự các điểm D và E sao cho BD=CE.

a) Chứng minh tam giác ADE là tam giác cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.

c) Từ B và C kẻ BH và Ck theo thứ tự vuông góc với AD và AE. Chứng minh BH=CK.

d) Chứng minh ba đường thẳng AM,BH và CK gặp nhau tại 1 điểm >

e) Gọi 2 tia phân giác ngoài tại các đỉnh D và E của tam giác ADE là F. Chứng minh rằng F thuộc tia AM và khoảng cách từ F đến 2 cạnh của tam giác ADE bằng nhau 

0

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )