K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

10 tháng 5 2017

1/ P = 123456....20132014

Từ 1 - 9 có 9 chữ số

từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số

từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số

từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số

=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số

2/ 

n là số n tố > 3 => n lẻ => 22 lẻ

=> n2+ 2015 chia hết cho 2 nên là hợp số

3/

Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9

Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}

* nếu y = 0 => x = 4

* nếu y = 2 => x = 2

* nếu y = 4 => x E {0; 9}

* nếu y = 6 => x = 7

* nếu y = 8 => x = 5

Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]

4/

x/9 - 3/ y = 1/18

=> 2x/18 - 3/y = 1/18

=> 3/y = 1/18 - 2x/18

=> 3/y = 1-2x/18

=> y - 2xy = 54=> y[1-2x] = 54

mà 1 - 2x lẻ nên y chẵn

mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}

y-22-66-1818-5454
1-2x-2727-99-33-11
2x28-2610-84-220
x14-135-42-110

vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]

5/

Theo đề bài, ta có:

b E BC[14, 21]

mà b nhỏ nhất nên b = 42

=> 14a = 42 . 5

=> a = 15;

=> 21c = 28 . 42

=> c = 56;

từ đó suy ra

6d = 11 . 56

=> d = 308/3

=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng

4 tháng 1 2016

bai1 A>B

làm bài 1 thui tui bận rùi

 

21 tháng 9 2016

bài 2

22...2^33...3 + 33...3^22...2 

= 22...2^33..32 . 22...2 + 33...3^22..20 . 33...3^3

= (...6) . (...2) + (...1) . (...7)

= (...2) + (...7)

= (...9)

=> chia 5 dư 4

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

6 tháng 2 2020

Xét bài toán : 

So sánh \(\frac{a}{b}\)và \(\frac{a+m}{b+m}\)( a>b , m>0)

Có \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

   \(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)

Mà a>b => am > bm => \(\frac{ab+am}{b\left(b+m\right)}>\frac{ab+bm}{b\left(b+m\right)}\)hay \(\frac{a}{b}>\frac{a+m}{b+m}\)

Áp dụng : \(A=\frac{3^{2017}+5}{3^{2015}+5}>\frac{3^{2017}+5+4}{3^{2015}+5+4}=\frac{3^{2017}+9}{3^{2015}+9}=\frac{3^2\left(3^{2017}+9\right)}{3^2\left(3^{2015}+9\right)}\)

                     \(=\frac{3^{2015}+1}{3^{2013}+1}=B\)

=> A > B

6 tháng 7 2020

Bài 3:

Dễ thấy 20162019 \(⋮\) 4; 82018 \(⋮\) 4. Đặt 20162019 = 4k; 82018 = 4h \(\left(k,h\in N\right)\).

Ta có: \(2A=7^{4k}-3^{4h}=2401^k-81^h=...1-\left(...1\right)=...0\)

Từ đó 2A chia hết cho 5.

Mà A là số tự nhiên và (2; 5) = 1 nên A chia hết cho 5.

6 tháng 7 2020

Đề không sai mà bạn. Đề thi chuyển lớp ít khi sai nhiều như thế lắm.