Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(C=2r\cdot3.14=r\cdot6.28\)
Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28
Câu 2:
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)
hay \(x_1=\dfrac{-4}{3}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)
Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)
a: x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{2}=\dfrac{-3}{4}:\dfrac{1}{7}=-\dfrac{3}{4}\cdot7=-\dfrac{21}{4}\)
=>\(x_1=-\dfrac{21}{4}\cdot2=-\dfrac{21}{2}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
mà \(y_1-x_1=-2\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=-\dfrac{2}{7}\)
=>\(x_1=\dfrac{-2}{7}\cdot\left(-4\right)=\dfrac{8}{7};y_1=\dfrac{-2}{7}\cdot3=-\dfrac{6}{7}\)
a: x và y tỉ lệ thuận với nhau
=>\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}=\dfrac{y_1+y_2}{x_1+x_2}=\dfrac{15}{-3}=-5\)
=>y=-5x
b: y=-5x
=>\(x=-\dfrac{1}{5}y\)
Thay y=-2 vào \(x=-\dfrac{1}{5}y\), ta được:
\(x=-\dfrac{1}{5}\cdot\left(-2\right)=\dfrac{2}{5}\)
Thay y=-9 vào x=-1/5y, ta được:
\(x=-\dfrac{1}{5}\cdot\left(-9\right)=\dfrac{9}{5}\)
Bài 1:
a; Gọi cạnh hình vuông là a thì chu vi hình vuông là: a x 4
Vậy chu vi và cạnh hình vuông là hai đại lượng tỉ lệ thuận.
Hệ số tỉ lệ là: a x 4 : a = 4
Bài 1
b; Gọi cạnh tam giác đều là a thì chu vi tam giác là: a x 3
Vậy chu vi và cạnh của tam giác là hai đại lượng tỉ lệ thuận, hệ số tỉ lệ là: a x 3 : a = 3