Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A E M K C H
a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !
CMR : \(\Delta ABE=\Delta HBE\)
Xét \(\Delta ABE,\Delta HBE\) có :
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )
\(BE:chung\)
=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)
b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)
Xét \(\Delta ABO,\Delta HBO\) có :
\(AB=BH\left(gt\right)\)
\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))
AO : Chung
=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)
Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)
=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)
=> \(BO\perp AH\)
Hay : \(BE\perp AH\)
c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)
Suy ra : \(EK=EC\) (2 cạnh tương ứng)
d) Xét \(\Delta ABC\) có :
BE là tia phân giác của \(\widehat{ABC}\) (1)
Xét \(\Delta KEM,\Delta CEM\) có :
\(EK=EC\left(cmt\right)\)
\(EM:chung\)
\(KM=CM\) (M là trung điểm của KC)
=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)
=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)
=> EM là tia phân giác của \(\widehat{KEC}\) (2)
Từ (1) và (2) => \(BE\equiv ME\)
=> B, E, M thẳng hàng
=> đpcm.
Câu hỏi của Nguyễn Hoàng Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài làm tại link này.
A B C D F I E
+ Từ D kẻ DF // AC \(\left(F\in BC\right)\)
\(\Rightarrow\widehat{DFB}=\widehat{ACB}\)( VÌ 2 góc đồng vị ) (1)
+ Vì \(\Delta ABC\)cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( tính chất của tam giác cân ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{DFB}=\widehat{ABC}\)
Hay \(\widehat{DFB}=\widehat{DBF}\)
\(\Rightarrow\Delta DBF\)cân tại D
\(\Rightarrow BD=FD\)( tính chất của tam giác cân )
Mà BD = CE ( gt )
\(\Rightarrow FD=CE\)
+ Vì DF // AC ( cách vẽ )
\(\Rightarrow DF//CE\)
\(\Rightarrow\widehat{FDI}=\widehat{CEI}\)( vì 2 góc so le trong )
Xét \(\Delta FDI\)và \(\Delta CEI\)có :
\(FD=CE\left(cmt\right)\)
\(\widehat{FDI}=\widehat{CEI}\left(cmt\right)\)
\(DI=EI\)( v ì I là trung điểm của DE ) ( gt)
Suy ra \(\Delta FDI=\Delta CEI\left(c.g.c\right)\)
\(\Rightarrow\widehat{FID}=\widehat{CIE}\)( 2 góc tương ứng )
Ta có : \(\widehat{CID}+\widehat{CIE}=180^0\)( kề bù )
Mà \(\widehat{FID}=\widehat{CIE}\left(cmt\right)\)
\(\Rightarrow\widehat{CID}+\widehat{FID}=180^0\)
\(\Rightarrow\widehat{FIC}=180^0\)
Hay \(\widehat{BIC}=180^0\)
\(\Rightarrow3\)diểm B , I , C thẳng hàng ( đpcm )
Chúc bạn học tốt !!!
Ta có: AB//a
AC//a
Do đó:AB//AC
mà AB và AC cắt nhau tại A
nênA,B,C thẳng hàng
Ta có: AB//a
AC//a
mà AB và AC có điểm chung là A
nên A,B,C thẳng hàng