K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

a) \(\dfrac{-5}{4}.\dfrac{1}{4}\)

b) \(\dfrac{-5}{4}:4\)

19 tháng 7 2023

giả sử căn(x) = a thì x = a2?

thì \(\sqrt{7}\) thì bằng bao nhiêu ạ?

5 tháng 8 2015

là đẳng thức của 2 tỉ số a/b và b/d

vd: a/b=c/d

5 tháng 8 2015

Tỉ lệ thức là một đẳng thức của hai số

Xem thêm tại: http://loigiaihay.com/ti-le-thuc-e449.html#ixzz3hxAck3LN

11 tháng 11 2023

Có nha bạn

12 tháng 5 2016

Căn bậc hai của một số a không âm là x sao cho x=a

Thì bạn phân tích ra thừa số nguyên tố á

Bấm số đó vào máy

Rồi bấm ShiFT+FACT nha

Rồi sau đó thấy tự động phân tích số mũ cho mình luôn à

3 tháng 8 2023

phân tích không cần mtinh thì sao bạn?

14 tháng 11 2018

Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.

Định nghĩa[sửa | sửa mã nguồn]

Cho số nguyên dương n, hai số nguyên a,b được gọi là đồng dư theo mô-đun n nếu chúng có cùng số dư khi chia cho n. Điều này tương đương với hiệu a-b chia hết cho n.

Ký hiệu:

{\displaystyle a\equiv b{\pmod {n}}\,}{\displaystyle a\equiv b{\pmod {n}}\,}

Ví dụ:

{\displaystyle 11\equiv 5{\pmod {3}}\,}{\displaystyle 11\equiv 5{\pmod {3}}\,}

Vì 11 và 5 khi chia cho 3 đều cho số dư là 2:

11: 3 = 3 (dư 2)

5: 3 = 1 (dư 2)

Tính chất[sửa | sửa mã nguồn]

Ngoài các tính chất của một quan hệ tương đương (phản xạ, đối xứng, bắc cầu), phép đồng dư còn có thêm các tính chất sau: Có thể cộng, trừ, nhân và nâng lên lũy thừa các đồng dư thức có cùng một mô-đun, cụ thể. Nếu ta có:

{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}

{\displaystyle b_{1}\equiv b_{2}{\pmod {n}}\,}{\displaystyle b_{1}\equiv b_{2}{\pmod {n}}\,}

Thì ta có:

  • {\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}{\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}{\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}{\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}
  • {\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}{\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}, với k nguyên dương.
  • Luật giản ước[sửa | sửa mã nguồn]

    Nếu {\displaystyle (a_{1}*b)\equiv (a_{2}*b){\pmod {n}}\,}{\displaystyle (a_{1}*b)\equiv (a_{2}*b){\pmod {n}}\,} và (b,n)=1 (b,n nguyên tố cùng nhau) thì {\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}

    Nghịch đảo mô-đun[sửa | sửa mã nguồn]

    Nếu số nguyên dương n và số nguyên a nguyên tố cùng nhau thì tồn tại duy nhất một số {\displaystyle x\in \{0,1,2,\cdots ,n-1\}}{\displaystyle x\in \{0,1,2,\cdots ,n-1\}} sao cho: {\displaystyle ax\equiv 1{\pmod {n}}\,}{\displaystyle ax\equiv 1{\pmod {n}}\,}, số x này được gọi là nghịch đảo của a theo mô-đun n.

    Hệ thặng dư đầy đủ[sửa | sửa mã nguồn]

    Tập hợp {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} được gọi là một hệ thặng dư đầy đủ mô-đun n nếu với mọi số nguyên i, {\displaystyle 0\leq i\leq n-1}{\displaystyle 0\leq i\leq n-1}, tồn tại duy nhất chỉ số j sao cho {\displaystyle a_{j}\equiv i{\pmod {n}}\,}{\displaystyle a_{j}\equiv i{\pmod {n}}\,}.

    Tính chất[sửa 

  • Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{a_{1}+a,a_{2}+a,\cdots ,a_{n}+a\}}{\displaystyle \{a_{1}+a,a_{2}+a,\cdots ,a_{n}+a\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a.
  • Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{aa_{1},aa_{2},\cdots ,aa_{n}\}}{\displaystyle \{aa_{1},aa_{2},\cdots ,aa_{n}\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a nguyên tố cùng nhau với n.

Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.

VD : 

  • {\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}
  • {\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}, với k nguyên dương.

Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật
Phần chứng minh bài toán, các bạn chắc gần như ai cũng biết, mình chỉ xin nêu một vài bài toán vận dụng cơ bản.

Số hữu tỉ là gì?

Số hữu tỉ là tập hơn các số có thể viết được dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b phải khác 0

Số hữu tỉ bao gồm số thập phân hữu hạn, số thập phân vô hạn tuần hoàn, tập hợp số nguyên.

Tập hợp các số hữu tỉ không hoàn toàn đồng nhất với tập hợp các phân số a/b, vì mỗi số hữu tỉ có thể biểu diễn bằng nhiều phân số khác nhau. Ví dụ như là 1/3,2/6,3/9 ... cùng biểu diễn một số hữu tỉ.

Tập hợp số hữu tỉ kí hiệu là Q

Tập hợp số hữu tỉ là tập hợp đếm được.

Tính chất của số hữu tỉ là:
 

  • Nhân số hữu tỉ có dạng a/b * c/d = a.c/ b.d
  • Chia số hữu tỉ có dạng a/ b : c/d = a.d/ b.c


Ví dụ:

Nhân số hữu tỉ: 2/3 * 4/5 = 2.4/ 3.5 = 8/15
Chia số hữu tỉ: 2/3 : 4/5 = 2.5/ 4.3= 10/ 12


Số vô tỉ là gì?

Số vô tỉ là tập hợp các số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Trong toán học thì các số thực không phải là số hữu tỉ mà được gọi là các số vô tỉ, nghĩa là các bạn không thể biểu diễn được dưới dạng tỉ số a/ b (a, b là các số nguyên).

Tập hợp số vô tỉ là tập hợp không đếm được.

Tập hợp số vô tỉ kí hiệu là I

Ví dụ:

Số √ 2 (căn 2)
Số thập phân vô hạn có chu kỳ thay đổi: 0.1010010001000010000010000001... 
Số = 1,41421 35623 73095 04880 16887 24209 7…
Số pi = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944…
Số lôgarít tự nhiên e = 2,71828 18284 59045 23536…