Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)
Bài 1 :
\(Q=x^2-2x+114\)
\(Q=x^2-2\cdot x\cdot1+1^2+113\)
\(Q=\left(x-1\right)^2+113\ge113\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Qmin = 113 khi và chỉ khi x = 1
Bài 2:
a) \(x^2+4x-5x-20\)
\(=x\left(x+4\right)-5\left(x+4\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
b) \(x^3+2x^2-9x-18\)
\(=x^2\left(x+2\right)-9\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-9\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
Bài 3:
1:
a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: Xét tứ giác BEFD có
DF=BE
DF//BE
Do đó; BEFD là hình bình hành
2: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(Cm^2\right)\)
Bài 1 :
a) \(3x^2+4x-7\)
\(=3x^2-3x+7x-7\)
\(=3x\left(x-1\right)+7\left(x-1\right)\)
\(\left(x-1\right)\left(3x+7\right)\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Bài 2 :
a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)
\(A=\frac{-4x-7}{x+2}\)
c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )
\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)
Bài 1:
a. $3x^3-12x^2+12x=3x(x^2-4x+4)=3x(x-2)^2$
b. $x^2-25+4xy+4y^2=(x^2+4xy+4y^2)-25=(x+2y)^2-5^2=(x+2y-5)(x+2y+5)$
c. $4x^3-x=x(4x^2-1)=x[(2x)^2-1^2]=x(2x-1)(2x+1)$
d. $x^2-x+2y-4y^2=(x^2-4y^2)-(x-2y)=(x-2y)(x+2y)-(x-2y)=(x-2y)(x+2y+1)$
Bài 2:
a. $3x(x-1)+x-1=0$
$\Leftrightarrow (x-1)(3x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $3x+1=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-1}{3}$
b. $x(2x+1)-4x^2+1=0$
$\Leftrightarrow x(2x+1)-(4x^2-1)=0$
$\Leftrightarrow x(2x+1)-(2x-1)(2x+1)=0$
$\Leftrightarrow (2x+1)[x-(2x-1)]=0$
$\Leftrightarrow (2x+1)(-x+1)=0$
$\Leftrightarrow 2x+1=0$ hoặc $-x+1=0$
$\Leftrightarrow x=\frac{-1}{2}$ hoặc $x=1$