Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).
Chúc bạn học tốt!
Bạn tham khảo tại link này nhé
https://h.vn/hoi-dap/question/192990.html
Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến
bài này mk nghĩ mấy tiếng còn không ra phải lên mạng mà xem
Bài làm
a) Xét tam giác ABC có:
\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )
Xét tam giác AKC có:
\(\widehat{EAC}+\widehat{KCA}=90^0\)
=> \(\widehat{BAE}=\widehat{EAC}\)
Xét tam giác BHA và tam giác AKC có:
\(\widehat{BHA}=\widehat{AKC}=90^0\)
Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )
Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )
=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )
=> BH = AK ( hai cạnh tương ứng )
b) Vì tam giác ABC vuông cân ở A
Mà AM là trung tuyến ( Do M là trung điểm BC )
=> AM cũng là đường cao của BC
=> AM vuông góc với BC
Xét tam giác AME vuông ở H có:
\(\widehat{MEA}+\widehat{MAE}=90^0\)
Xét tam giác KEC vuông ở K có:
\(\widehat{KEC}+\widehat{KCE}=90^0\)
Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )
=> \(\widehat{MAE}=\widehat{KCE}\) (1)
Ta có: CK vuông góc với AK
BH vuông góc với AK
=> CK // BH
=> \(\widehat{KCE}=\widehat{EBH}\) (2)
Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)
Xét tam giác MAC vuông ở M có:
\(\widehat{MCA}+\widehat{MAC}=90^0\)
Xét tam giác ABC vuông ở A có:
\(\widehat{ABC}+\widehat{MCA}=90^0\)
=> \(\widehat{MAC}=\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )
=> \(\widehat{MAC}=\widehat{MCA}\)
=> Tam giác MAC vuông cân ở M
=> MA = MC
Mà BM = MC ( Do M trung điểm BC )
=> MA = MC = BM
Xét tam giác MBH và tam giác MAK có:
AM = BM ( cmt )
\(\widehat{EBH}=\widehat{MAE}\)( cmt )
AK = BH ( cmt )
=> Tam giác MBH = tam giác MAK ( c.g.c )
c) Vì tam giác MBH = tam giác MAK ( cmt )
=> \(\widehat{MKH}=\widehat{BHM}\) (3)
=> MK = MH
=> Tam giác MHK cân ở M (4)
Xét tam giác BHE vuông ở H có:
\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau ) (5)
Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)
=> Tam giác MHK vuông ở M (6)
Từ (4) và (6) => Tam giác MHK vuông cân ở M
# Mik thấy nhiều bạn khó câu này nên mik lm #
a) Ta có góc BAK + góc KAC=90 độ ( vì tam giác ABC vuông tại A) (1)
góc BAH + góc ABH=90 độ ( vì tam giác ABH vuông ở H) (2)
Từ (1) và (2) => góc KAC= góc ABH
Xét tam giác ABH và tam giác CAK có:
góc AHB= góc AKC=90 độ
AB=AC
góc ABH= góc CAK
=> tam giác ABH= tam giác CAK ( cạnh huyền- góc nhọn)
=> BH=AK
sau mk lam tiep nha. mk ban roi
Ta có : lên trang wed này tìm :
https://olm.vn/hoi-dap/question/364440.html
Bài 1: Khó quá T.T
Bài 2: Bạn tự vẽ hình nha! :-)
1) Tam giác KAC vuông tại K => KAC + KCA = 90
mà KAC + BAK = 90 (2 góc kề bù)
=> KCA = BAK (1)
Xét tam giác HBA vuông tại H và tam giác KAC vuông tại K có:
AB = AC (tam giác ABC vuông cân tại A)
KCA = BAK (theo 1)
=> Tam giác HBA = Tam giác KAC (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng) (2)
2) Tam giác ABC vuông cân tại A có:
AM là đường trung tuyến (M là trung điểm của BC) => - MA = MB = MC (3)
- AM là đường cao hay BMA = CMA = 90
BH _l_ AE và CK _l_ AE => BH // CK
=> KCE = MBH (2 góc so le trong) (4)
Tam giác MAE vuông tại M => MAE + MEA = 90
Tam giác KEC vuông tại K => KCE + KEC = 90
mà MEA = KEC (2 góc kề bù)
=> MAE = KCE
mà KEC = MBH (theo 4)
=> MAE = MBH (5)
Xét tam giác BHM và tam giác AKM có:
MA = MB (theo 3)
MAK = MBH (theo 5)
BH = AK (theo 2)
=> Tam giác BHM = Tam giác AKM (c.g.c)
3) Xét tam giác MAH và tam giác MCK có:
MA = MC (theo 3)
MH = MK (tam giác BHM = tam giác AKM)
AH = KC (tam giác AKC = tam giác BHA)
=> Tam giác MAH = Tam giác MCK (c.c.c)
=> AMH = CMK (2 góc tương ứng) (6)
Ta có: AMH + HMC = 90 (theo 3)
CMK + HMC = HMK
mà AMH = CMK (theo 6)
=> HMK = 90 mà MH = MK (tam giác BHM = tam giác AKM)
Vậy tam giác MHK vuông cân tại M.