Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số khác nhau có 3 chữ số: \(4.4.3=48\)
Chỉ có một bộ duy nhất có tổng chia hết cho 9 là 1;8;9, hoán vị 3 chữ số này có 3!=6 cách
Vậy có \(48-6=42\) số
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
TH1: Có bộ \(\overline{519}\)
Số cách xếp vị trí cho bộ này là 5 cách
Chọn cho 4 vị trí còn lại thì có 7*6*5=210 cách
=>Có 5*210=1050 số
Trong 1050 số thì sẽ có \(4\cdot1\cdot6\cdot5\cdot4=480\) số có chữ số 0 đứng đầu
=>Có 1050-480=630 số thỏa mãn
TH2: Có bộ \(\overline{915}\)
Cm tươg tự TH1, ta cũng có 630 số thỏa mãn
=>Có tổng cộng là 1260 số thỏa mãn
TH1: Phải chứa bộ 519
Lấy 4 số trong tập A={0;2;3;4;6;7;8} có \(A^4_7\left(cách\right)\)
Cài bộ 519 vào vị trí đầu, cuối hoặc giữa thì có 5 cách
=>Có 5*A47=4200 số
Trong các số nói trên thì có \(4\cdot A^3_6=480\) số có chữ số 0 đứng đầu
=>Có 3720 số
TH2: Có bộ số 915
Cũng có 3720 số thỏa mãn
=>CÓ 3720*2=7440 số
Số cách chọn là:
\(A^2_{26}\cdot C^2_5\cdot C^2_5\cdot4!=1560000\left(cách\right)\)
Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.
+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.
+ Số có 2 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.
Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).
=> Có \(9 + 8 = 17\) (số)
+ Số có 3 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.
Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.
=> Có 9.8+8.8 = 136 (số)
Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.
Cho \(X=\left\{0;1;2;4;5;6;8;9\right\}\)
Gọi số cần tìm là \(\overline{abcd}\)
Chọn \(d=1,d=5\) hay \(d=9\)\(\Rightarrow\) có 1 cách
Chọn \(a\) có \(6\) cách \(\left(a\ne0,a\ne d\right)\)
Chọn \(b\) có \(5\) cách \(\left(b\ne a,b\ne d\right)\)
Chọn \(c\) có \(4\) cách \(\left(c\ne a,c\ne b,c\ne d\right)\)
Theo Quy tắc nhân, ta có : \(1.6.5.4=120\) cách chọn 4 chữ số khác nhau và là số lẻ.
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách