Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1 : \(Cmr:\)\(x^2-2x+5>0\)\(\forall x\)
\(x^2-2x+5>0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+4>0\)
\(\Leftrightarrow\left(x-1\right)^2+4>0\)
Ta thấy : \(\orbr{\begin{cases}\left(x-1\right)^2\ge0\\4>0\end{cases}\Leftrightarrow dpcm}\)
BÀI 2:
Gọi x ( quyển sách ) là số sách trong thư viện thứ nhất \(\left(x< 20000\right)\)
Vậy số sách trong thư viện thứ hai là : \(20000-x\)(quyển sách )
Do khi chuyển 2000 quyển sách từ thư viện thứ nhất sang thư viện thứ hai thì số sách trong hai thư viện bằng nhau nên ta có phương trình : \(x-2000=20000-x+2000\)
\(\Leftrightarrow2x=24000\)\(\Leftrightarrow x=12000\left(n\right)\)
Vậy số sách tring thư viện thứ nhất là : \(12000\) ( quyển sách )
suy ra số sách trong thư viện thứ hai là : \(20000-12000=8000\)( quyển sách )
BÀI 3:
Gọi \(2x\left(tạ\right)\) là số thóc trong kho thứ nhất \(\left(x>750\right)\)
Vậy số thóc trong kho thứ hai là : \(x\left(tạ\right)\)
Số thóc ở kho thứ nhất khi bớt 750 tạ là : \(\left(2x-750\right)\left(tạ\right)\)
Số thóc ở kho thứ hai khi thêm 350 tạ là : \(\left(x+350\right)\left(tạ\right)\)
Theo bài ra ta có phương trình : \(x+350=2x-750\)
\(\Leftrightarrow-x=-1100\)\(\Leftrightarrow x=1100\left(n\right)\)
số thóc ở kho thứ hai là ban đầu là : \(1100\)( tạ )
Vậy số thóc ở kho thứ nhất ban đầu là : \(2\cdot1100=2200\)(tạ)
BÀI 4 :
Gọi \(x\)là tử số của phân số đó \(\left(x>0\right)\)
Mẫu số phân số là : \(x+5\)
Phân số đó là : \(\frac{x}{x+5}\)
Khi tăng cả tử mẫu và mẫu 5 đơn vị thì phân số mới là : \(\frac{x+5}{x+10}\)
Theo bài ra ta có phương trình : \(\frac{x+5}{x+10}=\frac{2}{3}\)
\(\Leftrightarrow3\left(x+5\right)-2\left(x+10\right)=0\)
\(\Leftrightarrow x-5=0\)\(\Leftrightarrow x=5\left(n\right)\)
Vậy phân số ban đầu là : \(\frac{5}{5+5}=\frac{5}{10}=\frac{1}{2}\)
tk mk nka mk giải típ !!!
Bài 2:
Gọi tử của phân số là a(Điều kiện: \(a\in N\))
Vì tử nhỏ hơn mẫu là 12 nên ta có phân số: \(\dfrac{a}{a+12}\)
Vì khi tăng tử lên 3 đơn vị và giảm mẫu đi 4 đơn vị thì ta được phân số bằng \(\dfrac{2}{3}\) nên ta có phương trình:
\(\dfrac{a+3}{a+12-4}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{a+3}{a+8}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(a+3\right)=2\left(a+8\right)\)
\(\Leftrightarrow3a+9=2a+16\)
\(\Leftrightarrow3a-2a=16-9\)
\(\Leftrightarrow a=7\)
Vậy: Phân số cần tìm là \(\dfrac{7}{19}\)