K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

1,2,3,4 không tính được.

`5)(2x-1/2)^2`

`=(2x)^2-2+(1/2)^2`

`=4x^2-2+1/4`

`6)(x+1/4)^2`

`=x^2+1/2x+1/16`

27 tháng 6 2021

tính theo kiểu hằng đẳng thức đáng nhớ ý bạn :'(

 

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

19 tháng 6 2018

\(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)

bài 2 áp dụng hằng đẳng thức bạn nhé

bài 3\(A=\left(x^3+3x^2+3x+1\right)+5\)

              \(=\left(x+1\right)^3+5\)      thay x=19 vào ta được 

\(A=20^3+5=8005\)

         \(B=\left(x^3-3x^2+3x-1\right)+1\)

              \(=\left(x-1\right)^3+1\)

thay x=11 vào ta được

\(B=\left(11-1\right)^3+1=10^3+1=1001\)

19 tháng 6 2018

CÁC BẠN GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP 

TKS

17 tháng 7 2018

\(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)

\(=\)\(x^2-27y^3\)

\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)

\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)

làm nốt nha

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

17 tháng 8 2018

Bài 1:

a) \(25\left(x+2y\right)^2-16\left(2x-y\right)^2\)

\(=\left[5\left(x+2y\right)\right]^2-\left[4\left(2x-y\right)\right]^2\)

\(=\left[5\left(x+2y\right)-4\left(2x-y\right)\right]\left[5\left(x+2y\right)+4\left(2x-y\right)\right]\)

\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)

\(=\left(14y-3x\right)\left(13x+6y\right)\)

b) \(0,25\left(x-2y\right)^2-4\left(x+y\right)^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)\right]^2-\left[2\left(x+y\right)\right]^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)-2\left(x+y\right)\right]\left[\dfrac{1}{2}\left(x-2y\right)+2\left(x+y\right)\right]\)

\(=\left(\dfrac{1}{2}x-y-2x-2y\right)\left(\dfrac{1}{2}x-y+2x+2y\right)\)

\(=\left(-\dfrac{3}{2}x-3y\right)\left(\dfrac{5}{2}x+y\right)\)

\(=-3\left(\dfrac{1}{2}x+y\right)\left(\dfrac{5}{2}x+y\right)\)

c) \(\dfrac{4}{9}\left(x-3y\right)^2-0,04\left(x+y\right)^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)\right]^2-\left[\dfrac{1}{5}\left(x+y\right)\right]^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)-\dfrac{1}{5}\left(x+y\right)\right]\left[\dfrac{2}{3}\left(x-3y\right)+\dfrac{1}{5}\left(x+y\right)\right]\)

\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x-2y+\dfrac{1}{5}x+\dfrac{1}{5}y\right)\)

\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x-\dfrac{9}{5}y\right)\)

\(=\dfrac{1}{5}\left(\dfrac{7}{3}x-11y\right).\dfrac{1}{5}\left(\dfrac{13}{3}x-9y\right)\)

\(=\dfrac{1}{25}\left(\dfrac{7}{3}x-11y\right)\left(\dfrac{13}{3}x-9y\right)\)

d) \(-25x^2+30x-9\)

\(=-\left(25x^2-30x+9\right)\)

\(=-\left[\left(5x\right)^2-2.5x.3+3^2\right]\)

\(=-\left(5x-3\right)^2\)

Bài 2:

a) \(x^3y^2-x^2y^3-2x+2y\)

\(=x^2y^2\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2y^2-2\right)\)

Thay x = -1 và y = -2 vào ta được

\(=\left[-1-\left(-2\right)\right]\left[\left(-1\right)^2\left(-2\right)^2-2\right]\)

\(=1\left(4-2\right)\)

\(=2\)

b) \(5x^2-3x+3y-5y^2\)

\(=5\left(x^2-y^2\right)-3\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

Thay x = 3 và y = 1 vào ta được

\(=5\left(3-1\right)\left(3+1\right)-3\left(3-1\right)\)

\(=5.2.4-3.2\)

\(=34\)