K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

\(S=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)......\left(1-\frac{1}{100^2}\right)\)

\(=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}\)

\(=\frac{\left(1.3\right).\left(2.4\right).........\left(99.101\right)}{\left(2.2\right).\left(3.3\right).......\left(100.100\right)}\)

\(=\frac{\left(1.2....99\right)\left(3.4....101\right)}{\left(2.3.....100\right)\left(2.3....100\right)}\)

\(=\frac{1.101}{100.2}=\frac{101}{200}\)

2 tháng 4 2023

1+1=3 :)))

5 tháng 6 2015

\(\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{10}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\frac{1}{100}\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot0\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)=0

5 tháng 6 2015

\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right)......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)....\left(\frac{1}{100}-\left(\frac{1}{10}\right)^2\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)...\left(\frac{1}{100}-\frac{1}{100}\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).....0......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=0\)

 

27 tháng 2 2018

Ta có : 

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)

\(=\)\(\frac{1}{100}\)

11 tháng 3 2018

A= (1/4-1)(1/9-1).......(1/10000-1)

A=-3/4(-8/9).........(-9999/100^2)

A=-1.3/2.2 (-2.4/3.3)........(-99.101/100.100)

A=-1.(-2).(-3)........(-99)/2.3.4......100   .    2.3.4......101/.3.4....100

A=-1/100 . 102/3=17/50

Vậy A= 17/50

12 tháng 3 2018

làm sao để viết được p/s và số mũ như bạn vậy?

27 tháng 7 2015

tui ko nói vậy, mà cậu ghi gì tui không hiểu

17 tháng 3 2017

THấy ảnh đại diện của mk thì tk và gửi kb với mk nha

Yêu các bạn nhìu(^-^)

17 tháng 3 2017

Ai tk mk mk tk lại hứa đó

8 tháng 4 2018

\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(=-\frac{3}{4}.-\frac{8}{9}.\frac{-15}{16}...-\frac{9999}{10000}\)

\(=\left(-1\right)^{50}.\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)

\(=1.\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)

\(=\frac{3.8.15...9999}{4.9.16...10000}\)

\(=\frac{3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}\)

\(=\frac{\left(2.3.4...99\right).\left(3.4.5...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}\)

\(=\frac{1.101}{100.2}\)

\(=\frac{101}{200}\)

Tham khảo nha !!! 

8 tháng 4 2018

cảm ơn bạn rất nhiều