K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

 Cho k chạy từ 1 đến 99, ta có: 
• 1 + 1/1.3 = 2²/(1.3). 
• 1 + 1/2.4 = 3²/(2.4). 
• 1 + 1/3.5 = 4²/(3.5). 
• 1 + 1/97.99 = 98²/(97.99). 
• 1 + 1/98.100 = 99²/(98.100). 
• 1 + 1/99.101 = 100²/(99.101). 
Nhân vế với vế các đẳng thức trên, ta được: 
(1 + 1/1.3).(1 + 1/2.4)(1 + 1/3.5)....(1 + 1/99.101) 
= [2².3².....100²]/[1.2.3².4²......99².100...‡ 
= (2².100²)/(2.100.101) 
= 2.100/101 
= 200/101

2 tháng 7 2016

Xét số hạng tổng quát: 
1 + 1/[k.(k + 2)] = [k.(k + 2) + 1]/[k.(k + 2)] = (k + 1)²/[k.(k + 1)], với k nguyên dương. 
Cho k chạy từ 1 đến 99, ta có: 
• 1 + 1/1.3 = 2²/(1.3). 
• 1 + 1/2.4 = 3²/(2.4). 
• 1 + 1/3.5 = 4²/(3.5). 
....................... 
• 1 + 1/97.99 = 98²/(97.99). 
• 1 + 1/98.100 = 99²/(98.100). 
• 1 + 1/99.101 = 100²/(99.101). 
Nhân vế với vế các đẳng thức trên, ta được: 
(1 + 1/1.3).(1 + 1/2.4)(1 + 1/3.5)....(1 + 1/99.101) 
= [2².3².....100²]/[1.2.3².4²......99².100...‡ 
= (2².100²)/(2.100.101) 
= 2.100/101 
= 200/101.

27 tháng 6 2016

leu

30 tháng 7 2016

Ta có

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{100}\)

=>.....

30 tháng 7 2016

bạn làm tiếp được không?

27 tháng 6 2016

\(A=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)\left(1+\frac{1}{4^2-1}\right)\cdot...\cdot\left(1+\frac{1}{100^2-1}\right)\)

\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{99^2}{98\cdot100}\cdot\frac{100^2}{99\cdot101}=\frac{200}{101}\)

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)......\left(1+\frac{1}{99.100}\right)\)

\(=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)......\left(1+\frac{1}{100^2-1}\right)\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}..............\frac{100^2}{99.100}=\frac{200}{101}\)

T nha

\(B=\dfrac{-1}{9}\cdot\dfrac{-17}{19}\cdot\dfrac{58}{51}=\dfrac{1}{9}\cdot\dfrac{1}{3}\cdot\dfrac{58}{13}=\dfrac{58}{351}\)

10 tháng 4 2017

\(S=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(S=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(S=1-\frac{1}{100!}< 1\)

Vậy S<1

10 tháng 4 2017

thánh đây rồi , đơn giản vậy em nghĩ mãi k ra , cảm ơn anh nhiều

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)