Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A}=\left(1\times2\right)^{-1}+\left(2\times3\right)^{-1}+(3\times4)^{-1}+...+\left(9\times10\right)^{-1}\)
\(\text{A}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(\text{A}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\text{A}=1-\frac{1}{10}=\frac{9}{10}\).
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)
\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)
\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)
\(A=\frac{2016}{2017}\)
Ta có: B-A=1x3+2x4+3x5+4x6+...+100x102-(1x2+2x3+3x4+4x5+...+100x101)
=1x3+2x4+3x5+4x6+...100x102-1x2-2x3-3x4-4x5-...-100x101
=1+2+3+4+...+100
=((100-1):1+1)x((100-1):2)
=100x(101:2)
=5050
Bài 1:
\(A=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(3A=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 2:
\(B=1^2+2^2+...+n^2\)
\(B=1\left(2-1\right)+2\left(3-1\right)+...+n\left[\left(n+1\right)-1\right]\)
\(B=\left[1\cdot2+2\cdot3+...+n\left(n+1\right)\right]-\left(1+2+...+n\right)\)
\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(B=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)