Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 2) . (y + 3) = 15
Do x;y ∈ Z ⇒ x;y ∈ Ư(15) = {-1; -3; -5; -15; 1; 3; 5; 15}
Ta có bảng sau
x - 2 x y + 3 y -15 -5 -3 -1 1 3 5 15 -13 -1 -4 -3 -3 -6 -1 -5 -8 1 -15 -18 3 15 12 5 5 2 7 3 0 17 1 -2
Vậy (x; y) = (-13; -4); (-3; -6); (-1; -8); (1; -18); (3; 12); (5; 2); (7; 0); (17; -2)
b) Tương tự phần a
c) 5xy - 5x + y = 5
5x (y - 1) + y - 1 = 5 - 1
5x (y - 1) + (y - 1) = 4
(5x + 1) (y - 1) = 4
Rồilàm tươn tự 2 câu trên
KL: Vậy (x; y) = ..............
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
a) \(\left(x-2\right)\left(y+3\right)=15\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y+3\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(x\) | \(3\) | \(17\) | \(1\) | \(-13\) | \(5\) | \(7\) | \(-1\) | \(-3\) |
\(y\) | \(12\) | \(-2\) | \(-18\) | \(-4\) | \(2\) | \(0\) | \(-8\) | \(-6\) |
KL: Các cặp số (x; y)...
b) \(\left(3x+2\right)\left(1-y\right)=-7\)
\(\Rightarrow\left(3x+2\right)\left(1-y\right)=1.\left(-7\right)=\left(-7\right).1=\left(-1\right).7=7.\left(-1\right)\)
Ta có bảng sau:
\(3x+2\) | \(1\) | \(-7\) | \(-1\) | \(7\) |
\(1-y\) | \(-7\) | \(1\) | \(7\) | \(-1\) |
\(x\) | \(-\dfrac{1}{3}\) | \(-3\) | \(-1\) | \(\dfrac{5}{3}\) |
\(y\) | \(8\) | \(0\) | \(-6\) | \(2\) |
KL: Các cặp số (x; y)...
c) \(xy-5x=14-\left(-1\right)\)
\(\Leftrightarrow x\left(y-5\right)=15\)
\(\Rightarrow x\left(y-5\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y-5\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(y\) | \(20\) | \(6\) | \(-10\) | \(4\) | \(10\) | \(8\) | \(0\) | \(2\) |
KL: Các cặp số (x; y)...
c') \(xy+x=5\)
\(\Leftrightarrow x\left(y+1\right)=5\)
\(\Rightarrow x\left(y+1\right)=1.5=5.1=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(4\) | \(0\) | \(-6\) | \(-2\) |
KL: Các cặp số (x; y)...
d) Chưa tìm ra cách giải, chờ đã...
b) chịu
c)x(5y+5)+2y=-16
x(5y+5)+2(5y+5)=-80
(5y+5).(x+2)=-80
=>5y+5;x+2 \(\in\)Ư(-80)
Mà 3x+5 chia hết cho x-2 => [(3x+5)-(3x-6)] Có x-2 chia hết cho x-2 =>3x-6 chia hết cho x-2 => chia hết x-2 11 chia hết x-2 Lập bảng x-2 x 1 3 11 13 -1 1 -11 -9
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
Vì x-2 thuoc Z,y+3 thuoc Z, 15 thuoc Z
x-2 × y-3 thuoc ước của 15
Mà 15 có uoc la 1, -1, 3, -3,5,-5,15, -15
Rồi lập bảng thử chọn là xong câu a