Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
bài 1:
2(x^2-9).4(x^2-1)
=(2x^2-18)(4x^2-4)
=8x^4-8x^2-72x^2+72
=8x^4-80x^2+72
\(Bai1:2\left(x-3\right)\left(x+3\right)+4\left(x-1\right)\left(x+1\right)\)
\(=2\left(x^2-9\right)+4\left(x^2-1\right)\)
\(=2x^2-18+4x^2-4\)
\(=6x^2-22\)
\(Bai2:-\left(6x-1\right)\left(3-2x\right)+\left(3x-2\right)\left(4x-3\right)=17\)
\(\Leftrightarrow-\left(18x-12x^2-3+2x\right)+12x^2-9x-8x+6=17\)
\(\Leftrightarrow-18x+12x^2+3-2x+12x^2-9x-8x+6=17\)
\(\Leftrightarrow24x^2-37x+9-17=0\)
\(\Leftrightarrow24x^2-37x-8=0\)
Đề sai??
bạn viết rõ đề ra nhé
b, \(\left|4x-8\right|=1-x\)ĐK : \(x\le1\)
TH1 : \(4x-8=1-x\Leftrightarrow5x=9\Leftrightarrow x=\dfrac{9}{5}\)( ktm )
TH2 : \(4x-8=x-1\Leftrightarrow3x=7\Leftrightarrow x=\dfrac{7}{3}\)( ktm )
b) Ta có: \(\left|4x-8\right|=1-x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-8=1-x\left(x\ge2\right)\\4x-8=x-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x+x=1+8\\4x-x=-1+8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=9\\3x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{5}\left(loại\right)\\x=\dfrac{7}{3}\left(loại\right)\end{matrix}\right.\)
7: Ta có: \(\left(3x+4\right)\left(2x-1\right)+6x\left(1-x\right)=0\)
\(\Leftrightarrow6x^2-3x+8x-4+6x-6x^2=0\)
\(\Leftrightarrow11x=4\)
hay \(x=\dfrac{4}{11}\)
8: Ta có: \(2x\left(x^2-1\right)+x\left(-2x^2-3x+1\right)=-x-27\)
\(\Leftrightarrow2x^3-2x-2x^3-3x^2+x+x+27=0\)
\(\Leftrightarrow x^2=9\)
hay \(x\in\left\{3;-3\right\}\)
Bài 1.
a) -2x( -3x + 2 ) - ( x + 2 )2
= 6x2 - 4x - ( x2 + 4x + 4 )
= 6x2 - 4x - x2 - 4x - 4
= 5x2 - 8x - 4
b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )
= x3 + 8 + 2( x + 1 )( x - 1 )
= x3 + 8 + 2( x2 - 1 )
= x3 + 8 + 2x2 - 2
= x3 + 2x2 + 6
c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2
= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1
= 4
d) x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
Bài 2.
a) 4x2 - 4xy + y2 = ( 2x - y )2
b) 9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )
c) x3 + 2 + 3( x3 - 2 )
= x3 + 2 + 3x3 - 6
= 4x3 - 4
= 4( x3 - 1 )
= 4( x - 1 )( x2 + x + 1 )
Bài 3.
2( x - 2 ) = x2 - 4x + 4
⇔ ( x - 2 )2 - 2( x - 2 ) = 0
⇔ ( x - 2 )( x - 2 - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ x = 2 hoặc x = 4
c. - x ( x + 3 ) + 2 = ( 4x + 1 ) ( x - 1 ) + 2x
<=> - x2 - 3x + 2 = 4x2 - x - 1
<=> 4x2 - x - 1 + x2 + 3x - 2 = 0
<=> 5x2 + 2x - 3 = 0
<=> ( 5x2 + 5x ) - ( 3x + 3 ) = 0
<=> 5x ( x + 1 ) - 3 ( x + 1 ) = 0
<=> ( 5x - 3 ) ( x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-1\end{cases}}\)
d. ( 2x + 3 ) ( x - 3 ) - ( x - 3 ) ( x + 1 ) = ( 2 - x ) ( 3x + 1 ) + 3
<=> ( x - 3 ) ( 2x + 3 - x - 1 ) = - 3x2 + 5x + 5
<=> x2 - x - 6 = - 3x2 + 5x + 5
<=> - 3x2 + 5x + 5 - x2 + x + 6 = 0
<=> - 4x2 + 6x + 11 = 0
\(\Leftrightarrow x=\frac{6\pm\sqrt{\left(-6\right)^2-4\left(4.\left(-11\right)\right)}}{2.4}\)( xài công thức bậc 2 )
\(\Leftrightarrow x=\frac{6\pm2\sqrt{53}}{8}\Leftrightarrow x=\frac{3\pm\sqrt{53}}{4}\)
Vậy \(x=\frac{3+\sqrt{53}}{4};x=\frac{3-\sqrt{53}}{4}\)